455 research outputs found

    Tideglusib Rescues Neurite Pathology of SPG11 iPSC Derived Cortical Neurons

    Get PDF
    Mutations in SPG11 cause a complicated autosomal recessive form of hereditary spastic paraplegia (HSP). Mechanistically, there are indications for the dysregulation of the GSK3β/βCat signaling pathway in SPG11. In this study, we tested the therapeutic potential of the GSK3β inhibitor, tideglusib, to rescue neurodegeneration associated characteristics in an induced pluripotent stem cells (iPSCs) derived neuronal model from SPG11 patients and matched healthy controls as well as a CRISPR-Cas9 mediated SPG11 knock-out line and respective control. SPG11-iPSC derived cortical neurons, as well as the genome edited neurons exhibited shorter and less complex neurites than controls. Administration of tideglusib to these lines led to the rescue of neuritic impairments. Moreover, the treatment restored increased cell death and ameliorated the membranous inclusions in iPSC derived SPG11 neurons. Our results provide a first evidence for the rescue of neurite pathology in SPG11-HSP by tideglusib. The current lack of disease-modifying treatments for SPG11 and related types of complicated HSP renders tideglusib a candidate compound for future clinical application

    Impact of Swiprosin-1/Efhd2 on Adult Hippocampal Neurogenesis

    Get PDF
    Swiprosin-1/Efhd2 (Efhd2) is highly expressed in the CNS during development and in the adult. EFHD2 is regulated by Ca2+ binding, stabilizes F-actin, and promotes neurite extension. Previous studies indicated a dysregulation of EFHD2 in human Alzheimer's disease brains. We hypothesized a detrimental effect of genetic ablation of Efhd2 on hippocampal integrity and specifically investigated adult hippocampal neurogenesis. Efhd2 was expressed throughout adult neuronal development and in mature neurons. We observed a severe reduction of the survival of adult newborn neurons in Efhd2 knockouts, starting at the early neuroblast stage. Spine formation and dendrite growth of newborn neurons were compromised in full Efhd2 knockouts, but not upon cell- autonomous Efhd2 deletion. Together with our finding of severe hippocampal tauopathy in Efhd2 knockout mice, these data connect Efhd2 to impaired synaptic plasticity as present in Alzheimer's disease and identify a role of Efhd2 in neuronal survival and synaptic integration in the adult hippocampus

    Experimental Measurement of the Berry Curvature from Anomalous Transport

    Full text link
    Geometrical properties of energy bands underlie fascinating phenomena in a wide-range of systems, including solid-state materials, ultracold gases and photonics. Most famously, local geometrical characteristics like the Berry curvature can be related to global topological invariants such as those classifying quantum Hall states or topological insulators. Regardless of the band topology, however, any non-zero Berry curvature can have important consequences, such as in the semi-classical evolution of a wave packet. Here, we experimentally demonstrate for the first time that wave packet dynamics can be used to directly map out the Berry curvature. To this end, we use optical pulses in two coupled fibre loops to study the discrete time-evolution of a wave packet in a 1D geometrical "charge" pump, where the Berry curvature leads to an anomalous displacement of the wave packet under pumping. This is both the first direct observation of Berry curvature effects in an optical system, and, more generally, the proof-of-principle demonstration that semi-classical dynamics can serve as a high-resolution tool for mapping out geometrical properties

    A reversible state of hypometabolism in a human cellular model of sporadic Parkinson's disease

    Get PDF
    Sporadic Parkinson's Disease (sPD) is a progressive neurodegenerative disorder caused by multiple genetic and environmental factors. Mitochondrial dysfunction is one contributing factor, but its role at different stages of disease progression is not fully understood. Here, we showed that neural precursor cells and dopaminergic neurons derived from induced pluripotent stem cells (hiPSCs) from sPD patients exhibited a hypometabolism. Further analysis based on transcriptomics, proteomics, and metabolomics identified the citric acid cycle, specifically the alpha-ketoglutarate dehydrogenase complex (OGDHC), as bottleneck in sPD metabolism. A follow-up study of the patients approximately 10 years after initial biopsy demonstrated a correlation between OGDHC activity in our cellular model and the disease progression. In addition, the alterations in cellular metabolism observed in our cellular model were restored by interfering with the enhanced SHH signal transduction in sPD. Thus, inhibiting overactive SHH signaling may have potential as neuroprotective therapy during early stages of sPD. Mitochondrial dysfunction is a contributing factor in Parkinson's disease. Here the authors carry out a multilayered omics analysis of Parkinson's disease patient-derived neuronal cells, which reveals a reversible hypometabolism mediated by alpha-ketoglutarate dehydrogenase deficiency, which is correlated with disease progression in the donating patients

    Clinical and genetic features of amyotrophic lateral sclerosis patients with C9orf72 mutations

    Get PDF
    An expansion of the GGGGCC hexanucleotide in the non-coding region of C9orf72 represents the most common cause of familial amyotrophic lateral sclerosis. The objective was to describe and analyse the clinical and genetic features of amyotrophic lateral sclerosis patients with C9orf72 mutations in a large population. Between November 2011 and December 2020, clinical and genetic characteristics of n = 248 patients with amyotrophic lateral sclerosis carrying C9orf72 mutations were collected from the clinical and scientific network of German motoneuron disease centres. Clinical parameters included age of onset, diagnostic delay, family history, neuropsychological examination, progression rate, phosphorylated neurofilament heavy chain levels in CSF and survival. The number of repeats was correlated with the clinical phenotype. The clinical phenotype was compared to n = 84 patients with SOD1 mutations and n = 2178 sporadic patients without any known disease-related mutations. Patients with C9orf72 featured an almost balanced sex ratio with 48.4% (n = 120) women and 51.6% (n = 128) men. The rate of 33.9% patients (n = 63) with bulbar onset was significantly higher compared to sporadic (23.4%, P = 0.002) and SOD1 patients (3.1%, P < 0.001). Of note, 56.3% (n = 138) of C9orf72, but only 16.1% of SOD1 patients reported a negative family history (P < 0.001). The GGGGCC hexanucleotide repeat length did not influence the clinical phenotypes. Age of onset (58.0, interquartile range 52.0-63.8) was later compared to SOD1 (50.0, interquartile range 41.0-58.0;P < 0.001), but earlier compared to sporadic patients (61.0, interquartile range 52.0-69.0;P = 0.01). Median survival was shorter (38.0 months) compared to SOD1 (198.0 months, hazard ratio 1.97, 95% confidence interval 1.34-2.88;P < 0.001) and sporadic patients (76.0 months, hazard ratio 2.34, 95% confidence interval 1.64-3.34;P < 0.001). Phosphorylated neurofilament heavy chain levels in CSF (2880, interquartile range 1632-4638 pg/ml) were higher compared to sporadic patients (1382, interquartile range 458-2839 pg/ml;P < 0.001). In neuropsychological screening, C9orf72 patients displayed abnormal results in memory, verbal fluency and executive functions, showing generally worse performances compared to SOD1 and sporadic patients and a higher share with suspected frontotemporal dementia. In summary, clinical features of patients with C9orf72 mutations differ significantly from SOD1 and sporadic patients. Specifically, they feature a more frequent bulbar onset, a higher share of female patients and shorter survival. Interestingly, we found a high proportion of patients with negative family history and no evidence of a relationship between repeat lengths and disease severity. Wiesenfarth et al. report that amyotrophic lateral sclerosis patients with C9orf72 mutations differ significantly from sporadic patients and SOD1 gene carriers, including a higher share of bulbar onset, female patients, more severe neuropsychological deficits and shorter survival. No evidence of a relationship between repeat lengths and disease severity was found

    Informal Caregiving in Amyotrophic Lateral Sclerosis (ALS): A High Caregiver Burden and Drastic Consequences on Caregivers’ Lives

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive autonomy loss and need for care. This does not only affect patients themselves, but also the patients’ informal caregivers (CGs) in their health, personal and professional lives. The big efforts of this multi-center study were not only to evaluate the caregivers’ burden and to identify its predictors, but it also should provide a specific understanding of the needs of ALS patients’ CGs and fill the gap of knowledge on their personal and work lives. Using standardized questionnaires, primary data from patients and their main informal CGs (n = 249) were collected. Patients’ functional status and disease severity were evaluated using the Barthel Index, the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) and the King’s Stages for ALS. The caregivers’ burden was recorded by the Zarit Burden Interview (ZBI). Comorbid anxiety and depression of caregivers were assessed by the Hospital Anxiety and Depression Scale. Additionally, the EuroQol Five Dimension Five Level Scale evaluated their health-related quality of life. The caregivers’ burden was high (mean ZBI = 26/88, 0 = no burden, ≥24 = highly burdened) and correlated with patients’ functional status (rp = −0.555, p < 0.001, n = 242). It was influenced by the CGs’ own mental health issues due to caregiving (+11.36, 95% CI [6.84; 15.87], p < 0.001), patients’ wheelchair dependency (+9.30, 95% CI [5.94; 12.66], p < 0.001) and was interrelated with the CGs’ depression (rp = 0.627, p < 0.001, n = 234), anxiety (rp = 0.550, p < 0.001, n = 234), and poorer physical condition (rp = −0.362, p < 0.001, n = 237). Moreover, female CGs showed symptoms of anxiety more often, which also correlated with the patients’ impairment in daily routine (rs = −0.280, p < 0.001, n = 169). As increasing disease severity, along with decreasing autonomy, was the main predictor of caregiver burden and showed to create relevant (negative) implications on CGs’ lives, patient care and supportive therapies should address this issue. Moreover, in order to preserve the mental and physical health of the CGs, new concepts of care have to focus on both, on not only patients but also their CGs and gender-associated specific issues. As caregiving in ALS also significantly influences the socioeconomic status by restrictions in CGs’ work lives and income, and the main reported needs being lack of psychological support and a high bureaucracy, the situation of CGs needs more attention. Apart from their own multi-disciplinary medical and psychological care, more support in care and patient management issues is required

    Evidence for the η_b(1S) Meson in Radiative Υ(2S) Decay

    Get PDF
    We have performed a search for the η_b(1S) meson in the radiative decay of the Υ(2S) resonance using a sample of 91.6 × 10^6 Υ(2S) events recorded with the BABAR detector at the PEP-II B factory at the SLAC National Accelerator Laboratory. We observe a peak in the photon energy spectrum at E_γ = 609.3^(+4.6)_(-4.5)(stat)±1.9(syst) MeV, corresponding to an η_b(1S) mass of 9394.2^(+4.8)_(-4.9)(stat) ± 2.0(syst) MeV/c^2. The branching fraction for the decay Υ(2S) → γη_b(1S) is determined to be [3.9 ± 1.1(stat)^(+1.1)_(-0.9)(syst)] × 10^(-4). We find the ratio of branching fractions B[Υ(2S) → γη_b(1S)]/B[Υ(3S) → γη_b(1S)]= 0.82 ± 0.24(stat)^(+0.20)_(-0.19)(syst)

    Soluble B-cell maturation antigen in lacrimal fluid as a potential biomarker and mediator of keratopathy in multiple myeloma

    Get PDF
    Belantamab mafodotin (belantamab) is a first-in-class anti-BCMA antibody-drug conjugate approved for the treatment of triple-class refractory multiple myeloma. It provides a unique therapeutic option for patients ineligible for CAR-T and bispecific antibody therapy, and/or patients progressing on anti-CD38 treatment where CAR-T and bispecifics might be kept in reserve. Wider use of the drug can be challenged by its distinct ocular side effect profile, including corneal microcysts and keratopathy. While dose reduction has been the most effective way to reduce these toxicities, the underlying mechanism of this BCMA off-target effect remains to be characterized. In this study, we provide the first evidence for soluble BCMA (sBCMA) in lacrimal fluid and report on its correlation with tumor burden in myeloma patients. We confirm that corneal cells do not express BCMA, and show that sBCMA-belantamab complexes may rather be internalized by corneal epithelial cells through receptor-ligand independent pinocytosis. Using an hTcEpi corneal cell-line model, we show that the pinocytosis inhibitor EIPA significantly reduces belantamab-specific cell killing. As a proof of concept, we provide detailed patient profiles demonstrating that, after belantamab-induced cell killing, sBCMA is released into circulation, followed by a delayed increase of sBCMA in the tear fluid and subsequent onset of keratopathy. Based on the proposed mechanism, pinocytosis-induced keratopathy can be prevented by lowering the entry of sBCMA into the lacrimal fluid. Future therapeutic concepts may therefore consist of belantamab-free debulking therapy prior to belantamab consolidation and/or concomitant use of gamma-secretase inhibition as currently evaluated for belantamab and nirogacestat in ongoing studies
    • …
    corecore