14 research outputs found

    Iron storage in liver, bone marrow and splenic Gaucheroma reflects residual disease in type 1 Gaucher disease patients on treatment

    No full text
    Gaucher disease (GD) is a lysosomal storage disorder characterized by the storage of glycosphingolipids in macrophages. Despite effective therapy, residual disease is present in varying degrees and may be associated with late complications, such as persistent bone or liver disease and increased cancer risk. Gaucher macrophages are capable of storing iron and locations of residual disease may thus be detectable with iron imaging. Forty type 1 GD (GD1) patients and 40 matched healthy controls were examined using a whole-body magnetic resonance imaging protocol consisting of standard sequences, allowing analysis of iron content per organ, expressed as R2* (Hz). Median R2* values were significantly elevated in GD1 patients as compared to healthy controls in liver [41Hz (range 29-165) vs. 38Hz (range 28-53), P <0.01], femoral bone marrow [54Hz (range 37-129) vs. 49Hz (range 39-69), P=0.036] and vertebral bone marrow (118Hz (range 82-210) vs. 105Hz (range 76-149), P <0.01). In the spleen, primarily focal Gaucher lesions known as Gaucheroma were found to have increased R2* values. R2* values of liver, spleen and vertebral bone marrow strongly correlated with serum ferritin levels. GD1 patients with persistent hyperferritinaemia demonstrate increased iron levels in liver and bone marrow, which may carry a risk for liver fibrosis and cance

    Gender- and Age-Associated Differences in Bone Marrow Adipose Tissue and Bone Marrow Fat Unsaturation Throughout the Skeleton, Quantified Using Chemical Shift Encoding-Based Water-Fat MRI

    No full text
    Bone marrow adipose tissue (BMAT) is a dynamic tissue which is associated with osteoporosis, bone metastasis, and primary bone tumors. The aim of this study is to determine region-specific variations and age- and gender-specific differences in BMAT and BMAT composition in healthy subjects. In this cross-sectional study, we included 40 healthy subjects (26 male: mean age 49 years, range 22-75 years; 14 female: mean age 50 years, range 29-71) and determined the bone marrow signal fat fraction and bone marrow unsaturation in the spine (C3-L5), pelvis, femora, and tibiae using chemical shift encoding-based water-fat imaging (WFI) with multiple gradient echoes (mGRE). Regions of interest covered the individual vertebral bodies, pelvis and proximal epimetaphysis, diaphysis, and distal epimetaphysis of the femur and tibia. The spinal fat fraction increased from cervical to lumbar vertebral bodies (mean fat fraction ( +/- SD or (IQR): cervical spine 0.37 +/- 0.1; thoracic spine 0.41 +/- 0.08. lumbar spine 0.46 +/- 0.01; p < 0.001). The femoral fat fraction increased from proximal to distal (proximal 0.78 +/- 0.09; diaphysis 0.86 (0.15); distal 0.93 +/- 0.02; p < 0.001), while within the tibia the fat fraction decreased from proximal to distal (proximal 0.92 +/- 0.01; diaphysis 0.91 (0.02); distal 0.90 +/- 0.01; p < 0.001). In female subjects, age was associated with fat fraction in the spine, pelvis, and proximal femur (rho = 0.88 p < 0.001; rho = 0.87 p < 0.001; rho = 0.63 p = 0.02; rho = 0.74 p = 0.002, respectively), while in male subjects age was only associated with spinal fat fraction (rho = 0.40 p = 0.04). Fat fraction and unsaturation were negatively associated within the spine (r = -0.40 p = 0.01), while in the extremities fat fraction and unsaturation were positively associated (distal femur: r = 0.42 p = 0.01; proximal tibia: r = 0.47, p = 0.002; distal tibia: r = 0.35 p = 0.03), both independent of age and gender. In conclusion, we confirm the distinct, age- and gender-dependent, distribution of BMAT throughout the human skeleton and we show that, contradicting previous animal studies, bone marrow unsaturation in human subjects is highest within the axial skeleton compared to the appendicular skeleton. Furthermore, we show that BMAT unsaturation was negatively correlated with BMAT within the spine, while in the appendicular skeleton, BMAT and BMAT unsaturation were positively associated

    Hyperferritinemia and iron metabolism in Gaucher disease: Potential pathophysiological implications

    No full text
    Gaucher disease (GD) is characterized by large amounts of lipid-storing macrophages and is associated with accumulation of iron. High levels of ferritin are a hallmark of the disease. The precise mechanism underlying the changes in iron metabolism has not been elucidated. A systematic search was conducted to summarize available evidence from the literature on iron metabolism in GD and its potential pathophysiological implications. We conclude that in GD, a chronic low grade inflammation state can lead to high ferritin levels and increased hepcidin transcription with subsequent trapping of ferritin in macrophages. Extensive GD manifestations with severe anemia or extreme splenomegaly can lead to a situation of iron-overload resembling hemochromatosis. We hypothesize that specifically this latter situation carries a risk for the occurrence of associated conditions such as the increased cancer risk, metabolic syndrome and neurodegeneratio

    Imaging characteristics of focal splenic and hepatic lesions in type 1 Gaucher disease

    Get PDF
    In Gaucher disease (GD) imaging of liver and spleen is part of routine follow-up of GD patients. Focal lesions in both liver and spleen are frequently reported at radiological examinations. These lesions often represent benign accumulations of Gaucher cells, so-called "gaucheroma", but malignancies, especially hepatocellular carcinoma, are more frequently found in GD as well. We report the imaging characteristics of all focal lesions in liver and spleen in the Dutch GD cohort. Of the 95 GD1 patients, 40% had focal splenic and/or hepatic lesions, associated with more severe GD. Lesions identified as gaucheroma have variable imaging characteristics: hyper- to hypointense on MRI, hyper- or hypoechoic on US and hypodense on computed tomography (CT). Hepatic lesions were classified as simple cysts or haemangioma based upon imaging characteristics. Focal nodular hyperplasia (FNH), gaucheroma and hepatocellular carcinoma (HCC) could not be distinguished by conventional US, CT or MRI. Growth of these lesions and/or characteristics of HCC on dynamic CT or MRI and pathology was used to identify or rule out HCC. We propose a decision-making algorithm including the use of growth and dynamic CT- or MRI-scanning to characterize lesion

    Gender- and Age-Associated Differences in Bone Marrow Adipose Tissue and Bone Marrow Fat Unsaturation Throughout the Skeleton, Quantified Using Chemical Shift Encoding-Based Water-Fat MRI

    Get PDF
    Bone marrow adipose tissue (BMAT) is a dynamic tissue which is associated with osteoporosis, bone metastasis, and primary bone tumors. The aim of this study is to determine region-specific variations and age- and gender-specific differences in BMAT and BMAT composition in healthy subjects. In this cross-sectional study, we included 40 healthy subjects (26 male: mean age 49 years, range 22-75 years; 14 female: mean age 50 years, range 29-71) and determined the bone marrow signal fat fraction and bone marrow unsaturation in the spine (C3-L5), pelvis, femora, and tibiae using chemical shift encoding-based water-fat imaging (WFI) with multiple gradient echoes (mGRE). Regions of interest covered the individual vertebral bodies, pelvis and proximal epimetaphysis, diaphysis, and distal epimetaphysis of the femur and tibia. The spinal fat fraction increased from cervical to lumbar vertebral bodies (mean fat fraction ( ± SD or (IQR): cervical spine 0.37 ± 0.1; thoracic spine 0.41 ± 0.08. lumbar spine 0.46 ± 0.01; p < 0.001). The femoral fat fraction increased from proximal to distal (proximal 0.78 ± 0.09; diaphysis 0.86 (0.15); distal 0.93 ± 0.02; p < 0.001), while within the tibia the fat fraction decreased from proximal to distal (proximal 0.92 ± 0.01; diaphysis 0.91 (0.02); distal 0.90 ± 0.01; p < 0.001). In female subjects, age was associated with fat fraction in the spine, pelvis, and proximal femur (ρ = 0.88 p < 0.001; ρ = 0.87 p < 0.001; ρ = 0.63 p = 0.02; ρ = 0.74 p = 0.002, respectively), while in male subjects age was only associated with spinal fat fraction (ρ = 0.40 p = 0.04). Fat fraction and unsaturation were negatively associated within the spine (r = -0.40 p = 0.01), while in the extremities fat fraction and unsaturation were positively associated (distal femur: r = 0.42 p = 0.01; proximal tibia: r = 0.47, p = 0.002; distal tibia: r = 0.35 p = 0.03), both independent of age and gender. In conclusion, we confirm the distinct, age- and gender-dependent, distribution of BMAT throughout the human skeleton and we show that, contradicting previous animal studies, bone marrow unsaturation in human subjects is highest within the axial skeleton compared to the appendicular skeleton. Furthermore, we show that BMAT unsaturation was negatively correlated with BMAT within the spine, while in the appendicular skeleton, BMAT and BMAT unsaturation were positively associated

    Gender- and Age-Associated Differences in Bone Marrow Adipose Tissue and Bone Marrow Fat Unsaturation Throughout the Skeleton, Quantified Using Chemical Shift Encoding-Based Water–Fat MRI

    No full text
    Bone marrow adipose tissue (BMAT) is a dynamic tissue which is associated with osteoporosis, bone metastasis, and primary bone tumors. The aim of this study is to determine region-specific variations and age- and gender-specific differences in BMAT and BMAT composition in healthy subjects. In this cross-sectional study, we included 40 healthy subjects (26 male: mean age 49 years, range 22–75 years; 14 female: mean age 50 years, range 29–71) and determined the bone marrow signal fat fraction and bone marrow unsaturation in the spine (C3-L5), pelvis, femora, and tibiae using chemical shift encoding-based water–fat imaging (WFI) with multiple gradient echoes (mGRE). Regions of interest covered the individual vertebral bodies, pelvis and proximal epimetaphysis, diaphysis, and distal epimetaphysis of the femur and tibia. The spinal fat fraction increased from cervical to lumbar vertebral bodies (mean fat fraction (± SD or (IQR): cervical spine 0.37 ± 0.1; thoracic spine 0.41 ± 0.08. lumbar spine 0.46 ± 0.01; p < 0.001). The femoral fat fraction increased from proximal to distal (proximal 0.78 ± 0.09; diaphysis 0.86 (0.15); distal 0.93 ± 0.02; p < 0.001), while within the tibia the fat fraction decreased from proximal to distal (proximal 0.92 ± 0.01; diaphysis 0.91 (0.02); distal 0.90 ± 0.01; p < 0.001). In female subjects, age was associated with fat fraction in the spine, pelvis, and proximal femur (ρ = 0.88 p < 0.001; ρ = 0.87 p < 0.001; ρ = 0.63 p = 0.02; ρ = 0.74 p = 0.002, respectively), while in male subjects age was only associated with spinal fat fraction (ρ = 0.40 p = 0.04). Fat fraction and unsaturation were negatively associated within the spine (r = -0.40 p = 0.01), while in the extremities fat fraction and unsaturation were positively associated (distal femur: r = 0.42 p = 0.01; proximal tibia: r = 0.47, p = 0.002; distal tibia: r = 0.35 p = 0.03), both independent of age and gender. In conclusion, we confirm the distinct, age- and gender-dependent, distribution of BMAT throughout the human skeleton and we show that, contradicting previous animal studies, bone marrow unsaturation in human subjects is highest within the axial skeleton compared to the appendicular skeleton. Furthermore, we show that BMAT unsaturation was negatively correlated with BMAT within the spine, while in the appendicular skeleton, BMAT and BMAT unsaturation were positively associated

    Altered exhaled biomarker profiles in children during and after rhinovirus-induced wheeze

    No full text
    Preschool rhinovirus-induced wheeze is associated with an increased risk of asthma. In adult asthma, exhaled volatile organic compounds (VOC) are associated with inflammatory activity. We therefore hypothesised that acute preschool wheeze is accompanied by a differential profile of exhaled VOC, which is maintained after resolution of symptoms in those children with rhinovirus-induced wheeze. We included 178 children (mean +/- SD age 22 +/- 9 months) from the EUROPA cohort comparing asymptomatic and wheezing children during respiratory symptoms and after recovery. Naso- and oropharyngeal swabs were tested for rhinovirus by quantitative PCR. Breath was collected via a spacer and analysed using an electronic nose. Between-group discrimination was assessed by constructing a 1000-fold cross-validated receiver operating characteristic curve. Analyses were stratified by rhinovirus presence/absence. Wheezing children demonstrated a different VOC profile when compared with asymptomatic children (p <0.001), regardless of the presence (area under the curve (AUC) 0.77, 95% CI 0.07) or absence (AUC 0.81, 95% CI 0.05) of rhinovirus. After symptomatic recovery, discriminative accuracy was maintained in children with rhinovirus-induced wheeze (AUC 0.84, 95% CI 0.06), whereas it dropped significantly in infants with non-rhinovirus-induced wheeze (AUC 0.67, 95% CI 0.06). Exhaled molecular profiles differ between preschool children with and without acute respiratory wheeze. This appears to be sustained in children with rhinovirus-induced wheeze after resolution of symptoms. Therefore, exhaled VOC may qualify as candidate biomarkers for early signs of asthm
    corecore