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Bone marrow adipose tissue (BMAT) is a dynamic tissue which is associated with
osteoporosis, bone metastasis, and primary bone tumors. The aim of this study is to
determine region-specific variations and age- and gender-specific differences in BMAT
and BMAT composition in healthy subjects. In this cross-sectional study, we included 40
healthy subjects (26 male: mean age 49 years, range 22–75 years; 14 female: mean age
50 years, range 29–71) and determined the bone marrow signal fat fraction and bone
marrow unsaturation in the spine (C3-L5), pelvis, femora, and tibiae using chemical shift
encoding-based water–fat imaging (WFI) with multiple gradient echoes (mGRE). Regions
of interest covered the individual vertebral bodies, pelvis and proximal epimetaphysis,
diaphysis, and distal epimetaphysis of the femur and tibia. The spinal fat fraction increased
from cervical to lumbar vertebral bodies (mean fat fraction ( ± SD or (IQR): cervical spine
0.37 ± 0.1; thoracic spine 0.41 ± 0.08. lumbar spine 0.46 ± 0.01; p < 0.001). The femoral
fat fraction increased from proximal to distal (proximal 0.78 ± 0.09; diaphysis 0.86 (0.15);
distal 0.93 ± 0.02; p < 0.001), while within the tibia the fat fraction decreased from
proximal to distal (proximal 0.92 ± 0.01; diaphysis 0.91 (0.02); distal 0.90 ± 0.01; p <
0.001). In female subjects, age was associated with fat fraction in the spine, pelvis, and
proximal femur (r = 0.88 p < 0.001; r = 0.87 p < 0.001; r = 0.63 p = 0.02; r = 0.74 p =
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https://www.frontiersin.org/articles/10.3389/fendo.2022.815835/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.815835/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.815835/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.815835/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.815835/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.815835/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:m.maas@amsterdamumc.nl
https://doi.org/10.3389/fendo.2022.815835
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.815835
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.815835&domain=pdf&date_stamp=2022-04-27


Abbreviations: BMAT, bone marrow adip
chemical shift encoding-based water–fat
echoes; rBMAT, regulated BMAT; cBM
single-voxel proton magnetic resonance sp
CL, average fatty acid chain length; ndb
methylene-interrupted double bonds.

Beekman et al. BMAT and Unsaturation by WFI-mGRE

Frontiers in Endocrinology | www.frontiersi
0.002, respectively), while in male subjects age was only associated with spinal fat fraction
(r = 0.40 p = 0.04). Fat fraction and unsaturation were negatively associated within the
spine (r = -0.40 p = 0.01), while in the extremities fat fraction and unsaturation were
positively associated (distal femur: r = 0.42 p = 0.01; proximal tibia: r = 0.47, p = 0.002;
distal tibia: r = 0.35 p = 0.03), both independent of age and gender. In conclusion, we
confirm the distinct, age- and gender-dependent, distribution of BMAT throughout the
human skeleton and we show that, contradicting previous animal studies, bone marrow
unsaturation in human subjects is highest within the axial skeleton compared to the
appendicular skeleton. Furthermore, we show that BMAT unsaturation was negatively
correlated with BMAT within the spine, while in the appendicular skeleton, BMAT and
BMAT unsaturation were positively associated.
Keywords: bone marrow adipose tissue, bone marrow fat unsaturation, bone marrow adipose tissue distribution,
healthy subjects, water–fat MR imaging
INTRODUCTION

Bone marrow adipose tissue (BMAT) is associated with different
diseases like osteoporosis (1–3) and primary bone malignancies
(4); furthermore, the bone marrow is a frequent metastatic site.
BMAT is associated with bone metabolism (5, 6) and serves as a
lipid source for proliferation and infiltration of malignant cells
(7, 8), and tumor cells can affect the secretion of free fatty acids
by bone marrow adipocytes (9). Furthermore, lower BMAT
unsaturation and higher BMAT saturation appear to be
associated with fractures (10).

Traditionally, the bone marrow is divided into red (or
hematopoietic) and yellow (or fatty) marrow (11). After birth,
conversion of the red marrow into yellow marrow starts in the
appendicular skeleton in a centripetal way (12), and BMAT
increases by approximately 6%–7.5% per decade (13–16). In
situations of increased hematological demands, reconversion of
yellow marrow to red marrow may occur. Furthermore, there are
gender-associated differences in BMAT (13–15, 17).

Little is known about the region-specific variation bone
marrow fatty acid composition in humans. Animal studies
suggest that there are two distinct types of BMAT: regulated
and constitutive BMAT (rBMAT and cBMAT) (18). In animals,
rBMAT contains more saturated fatty acids, is located
proximally within long bones, develops throughout life, and
responds to BMAT-inducing stimuli. cBMAT contains more
unsaturated fatty acids, is located distally in long bones, develops
in early life, and does not respond to BMAT-inducing
stimuli (18).

The gold standard for BMAT and BMAT fatty acid
composition is single-voxel proton magnetic resonance
spectroscopy (1H-MRS) (19). However, 1H-MRS availability is
ose tissue; SFF, signal fat fraction; WFI,
imaging; mGRE, multiple gradient
AT, constitutive BMAT; 1H-MRS,
ectroscopy; ROIs, regions of interest;
, number of double bonds; nmidb,

n.org 2
limited and the sampling area within the skeleton small, due to
long acquisition times. Chemical shift encoding-based water–fat
imaging (WFI) is widely used for quantification of BMAT (19).
WFI with multiple gradient echoes (WFI-mGRE) is able to
quantify both bone marrow fat fraction and BMAT unsaturation
from the same MRI images, with fast acquisition times.
Furthermore, WFI-mGRE shows good agreement with 1H-MRS
(20–24).

Insight in the normal variation of BMAT and BMAT fatty
acid composition throughout the skeleton is necessary to further
evaluate the interaction between BMAT, bone metabolism, and
skeletal malignancies. Therefore, we aimed to determine region-
specific variation and age- and gender-specific differences in
BMAT and BMAT composition using WFI-mGRE, in
healthy subjects.
METHODS

Subjects
In this cross-sectional study, we quantified the bone marrow signal
fat fraction in 40 healthy subjects within the spine (C3-L5), pelvis,
femora, and tibia. All subjects were recruited as part of a different
study (25) (trial nr. NTR5056). The main inclusion criterion was
age >18 years, and subjects with a history of bone marrow disease
were excluded. Subjects had no hematologic ormetabolic disorders.
One subject used vitamin D supplementation, and two subjects
used oral contraceptives.

We included 26 male subjects and 14 female subjects. The mean
age was 49 years for male subjects (range 22–75 years) and 50 years
(range 29–71) for the female subjects (p = 0.84). Seven out of the 14
female subjects were postmenopausal. Subject characteristics are
shown in Table 1. Male subjects were taller compared to female
subjects (mean height: male 182 ± 8 cm, female 170 ± 7 cm; p <
0.001) and were heavier (mean weight: male 84 ± 13 kg; female
68 ± 12 kg; p < 0.001). BMI was not significantly different between
male and female subjects (mean BMI male: 25.5 ± 0.6; female:
23.6 ± 0.5; p = 0.16).
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Scans were acquired between July 2014 and August 2015 at
the Amsterdam University Medical Centers/University of
Amsterdam. The local ethics committee of the Amsterdam
University Medical Centers/University of Amsterdam approved
the protocol, and all subjects gave their written informed
consent. This study was carried out in compliance with the
World Medical Association Declaration of Helsinki—Ethical
Principles for Medical Research Involving Human Subjects.

Image Acquisition
From the previous study with trial number NTR5056, we used a
coronal whole-body and a sagittal whole-spine data set. All
images were acquired on a 1.5-T MRI (Siemens Avanto,
Siemens AG, Erlangen, Germany). All patients were placed in
the scanner in supine position. Both datasets consisted of
magnitude and phase images, enabling complex valued
analysis. Both datasets were acquired using a standard 2D
multi-echo spoiled gradient echo sequence, with 12 echoes,
TE = 0.99–16.5 ms and an echo spacing of 1.41 ms. Slice
thickness was 7.5 mm, with a 7.5-mm gap. The flip angle was
20°, and the acquisition matrix was 256 × 96.

The whole-body data set was acquired with 8 to 9 stations of
15 to 21 slices, a repetition time of 301 ms, and a field of view of
250 × 500 mm. Acquisition time is 17.8 s per station (breath-hold
for the thorax and abdominal stations). The spine data set was
acquired with 3 to 5 stations of 15 slices, a repetition time of 333
ms, and a field of view of 280 × 280 mm. Acquisition time is 19.7
s per station.

Region of Interest
Regions of interest (ROIs) were always drawn within the data of
one station, since phase information from different stations does
not match. The fitted parameters from different ROIs were
averaged when necessary. In the spine, usually one mid-sagittal
ROI per vertebral body was drawn. For the pelvis, several ROIs in
3 slices where the pelvis bone marrow was manifestly visible,
both right and left, were drawn. For both the femora and tibiae,
right as well as left, three ROIs were drawn: the proximal
epimetaphysis, the diaphysis, and the distal epimetaphysis,
again in the image where the bone marrow was most clearly
visible. Examples of the ROIs covering the spine, pelvis, femora,
and tibiae are shown in Supplemental Figure 1.
Analysis of the ROIs
The multi-echo data were fitted to a fat–water signal function,
based on the fat characterization model by (26).
Frontiers in Endocrinology | www.frontiersin.org 3
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The model includes nine fat peaks, each with its own
frequency with respect to the water peak, wn, and weighting
factor, nn, which in its turn depends on the average fatty acid
chain length (CL), the number of double bonds per fat molecule
(ndb), and the number of direct double-bond neighbor pairs
(methylene-interrupted double bonds, nmidb). The weighting
factors were scaled so that their sum equaled one. It turned out
that our data were not sufficient enough to fit all three
parameters reliably, so we fixed the CL to 17.45, being the
average chain length in human fat (20), thus leaving ndb and
nmidb as free parameters to characterize the fat composition.

Further free parameters are as follows: j0, the excitation
phase offset, w0, the frequency contribution of B0
inhomogeneities, S0, the signal magnitude at t = 0, SFF, the
signal fat fraction, T2,w*, the water relaxation time, and T2,f*, the
fat relaxation time, which is taken to be equal for all fat peaks.
Our data set did not contain information to correct for
differences in T1, which would require additional acquisitions,
therefore measuring the signal fat fraction, rather than the actual
proton density fat fraction. In the tibiae and femora, a pixel-by-
pixel fit could be performed. In the spine and pelvis, we first
estimated an averaged signal over the ROI. This estimation was
done for the signal magnitude and phase separately. Figure 1
shows an example of a dataset and the corresponding fit.

Statistical Analysis
The statistical analysis was performed with IBM SPSS Statistics
for Windows (version 26; SPSS Inc., Chicago, IL, USA). Graphs
were created using GraphPad Prism (Version 8.2.1 for Windows,
GraphPad Software, La Jolla, CA, USA). The mean and standard
deviation (reported as “ ± SD”) or the median and interquartile
ranges (reported as “(IQR)”) are reported, depending on the
distribution. To compare male and female subject characteristics,
we used Student’s t-test or the Mann–Whitney U test, depending
on the distribution of the data. Within-subject differences in
BMAT distribution and unsaturation linear mixed models
(LMM) were used. A covariance structure was chosen based on
Akaike’s information criterion (AIC) and Schwarz’s Bayesian
criterion (BIC). We used Pearson (r) and Spearman’s (r) tests to
determine correlations between variables depending on the
distribution of the data. To estimate the effects of age, gender,
and unsaturation (ndb) and their interactions on BMAT (fat
fraction), multiple linear regression models were used. BMAT
was included as the outcome variable, and the age and number of
double bonds and their interactions were included as predictors.
TABLE 1 | Subject characteristics, mean ± SD.

Male Female

N 26 14
Age (years) 49 (range 22–75) 50 (range 29–71)
Postmenopausal 7 out of 14
Height (cm) 182 ± 8 170 ± 7
Weight (kg) 84 ± 14 68 ± 12
BMI (kg/m2) 25.5 ± 3.4 23.6 ± 4.4
Hb 9.3 ± 0.6 8.3 ± 0.5
April 2022 | Volume 13
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In case assumptions were violated (normally distributed
residuals, equal variances), the outcome variable was rank
transformed. All statistical tests were two-sided, and a p-value
of 0.05 was considered significant. For the post-hoc analysis of the
LMM, a Bonferroni correction was applied, making p < 0.008
significant for the comparison between the spine, pelvis, femur,
and tibia and p < 0.016 for the comparisons within the spine,
femur, and tibia.
RESULTS

Distribution of Bone Marrow Adipose
Tissue and Bone Marrow Fat Composition
When analyzing all subjects collectively, the bone marrow fat
fraction increased from cranial to caudal, with the spine having
the lowest fat fraction and the tibia the highest (spine 0.41 ± 0.09;
pelvis 0.56 ± 0.1; femur 0.86 (0.08); tibia 0.91 (0.02) p < 0.001;
Figure 2A). Similarly, within the spine the fat fraction increased
from cranial to caudal (Figure 3A), with the cervical spine
having a significantly lower fat fraction compared to the
Frontiers in Endocrinology | www.frontiersin.org 4
thoracic and lumbar spine (cervical spine 0.37 ± 0.1; thoracic
spine 0.41 ± 0.08; lumbar spine 0.46 ± 0.01; p < 0.001). Within
the femur, the fat fraction increased from proximal to distal
(proximal 0.78 ± 0.09; diaphysis 0.86 (0.15); distal 0.93 ± 0.02;
p < 0.001; Figure 3B), while within the tibia the fat fraction
showed a small, but significant decrease from proximal to distal
(proximal 0.92 ± 0.01; diaphysis 0.91 (0.02); distal 0.90 ± 0.01; p
< 0.001; Figure 3C). Throughout our data, the resulting fitted
values of methylene-interrupted double bonds (nmidb) were
close to zero. Consequently, we cannot draw any conclusions
from this parameter, and we only present the values for ndb as a
measure for bone marrow fat unsaturation. Unsaturation was
highest in the pelvis, second highest in the spine, and lowest in
the tibia (spine 2.71 ± 0.35; pelvis 2.82 (0.56); femur 2.22 ± 0.14;
tibia 2.03 ± 0.16; p < 0.001; Figure 2B). Unsaturation was not
significantly different when comparing the cervical spine, the
thoracic spine, and the lumbar spine (cervical spine 2.89 ± 1.04;
thoracic spine 2.74 ± 0.50; lumbar spine 2.56 ± 0.53, p = 0.13);
Figure 3D). Within both the femur and the tibia, unsaturation
was highest within the diaphysis (femur: proximal 2.16 ± 0.19;
diaphysis 2.31 ± 0.13; distal 2.2 ± 0.15; p < 0.001; Figure 3E and
A B

FIGURE 1 | Dataset and corresponding fit of vertebra Th11 of volunteer #20. The fit is performed on the complex valued data: the magnitude (arbitrary units) in (A),
the phase (radians) in (B). The amplitude in the total signal magnitude is larger than in the fat component only, because of the interference of the fat and water signals.
A B

FIGURE 2 | (A) Bone marrow fat fraction increased from cranial to caudal (linear mixed model (LMM): p < 0.001). (B) Unsaturation (number of double bonds, ndb)
was highest within the pelvis, followed by the spine, and lowest within the tibia (LMM: p < 0.001).
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tibia: proximal 2.06 ± 0.16; diaphysis 2.17 ± 0.15; distal 1.85 ±
0.20; p < 0.001; Figure 3F) . No significant correlations were
found between unsaturation and age, neither in female nor in
male subjects; results are shown in Supplemental Figure 2.

Age- and Gender-Related Differences in
Bone Marrow Adipose Tissue
When analyzing all subjects collectively, the bone marrow fat
fraction increased with age in the spine and pelvis (spine: r = 0.64
and p < 0.001; pelvis: r = 0.56 and p < 0.001; data not shown).
Frontiers in Endocrinology | www.frontiersin.org 5
Within the extremities, the fat fraction of the femur tended to
correlate with age, based on a positive correlation between the fat
fraction of the proximal femur and age (femur: r = 0.27, p = 0.09;
proximal femur: r = 0.41, p = 0.01; tibia r = - 0.23, p = 0.16; data
not shown). Within female subjects, bone marrow fat fraction
and age were positively correlated within the spine, pelvis, femur,
and proximal femur (spine: r = 0.88, p < 0.001; pelvis: r 0.87, p <
0.001; femur: r = 0.63, p = 0.02; proximal femur: r = 0.74, p =
0.002; Figures 4A–D), while in male subjects fat fraction and age
were only correlated within the spine, and not within the pelvis,
A

B

D

E

FC

FIGURE 3 | (A) Bone marrow fat fraction increased from cranial to caudal within the spine (linear mixed model (LMM): p < 0.001). (B) Fat fraction increased in the
femur from proximal to distal (LMM: p < 0.001). (C) Fat fraction decreased in the tibia from proximal to distal (LMM: p < 0.001). (D) Unsaturation (number of double
bonds, ndb) was similar when comparing the cervical spine, thoracic spine, and the lumbar spine (LMM: p = 0.09; ns). (E) Unsaturation was highest within the
diaphysis of the femur (p < 0.001) and (F) within the diaphysis of the tibia (LMM: p < 0.001), compared to the proximal and distal sites. Images on the right side
show representative images of ROI placement in the vertebral bodies of the spine, in the proximal epimetaphysis, the diaphysis and the distal epimetaphysis of the
femora and tibiae. ns, non-significant.
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femur, proximal femur, and tibia (spine: r = 0.40, p = 0.04; pelvis:
r = 0.29, p = 0.14; femur: r = 0.11, p = 0.59; proximal femur: r =
0.20, p = 0.34 (Figures 4A–D); tibia r = -0.29, p = 0.16; data not
shown). Multiple linear regression models were applied to
estimate the effect of age, gender, and their interaction on the
bone marrow fat fraction. Within the spine, only age was a
significant predictor of fat fraction (p < 0.001, R2 = 0.40). Within
the pelvis, age, gender, and their interaction term were significant
predictors of the fat fraction (age: p < 0.001; gender p = 0.01;
age*gender p = 0.02; R2 = 0.41). Within the femur, only gender
was a significant predictor of the fat fraction (p = 0.025; R2 0.19);
no significant interaction between age and gender was found
within the total femur. Within the proximal femur, age, gender,
and the interaction term were significant predictors of the fat
fraction (age: p = 0.001; gender p = 0.01; age*gender p = 0.05;
R2 = 0.34). Regression lines are shown in Figure 4.

The Association Between BMAT Amount
and BMAT Composition
Despite age and gender being significant predictors of fat
fraction, we previously showed that there were no significant
correlations between age, gender, and unsaturation (Section 3.1;
Supplemental Figure 2). Therefore, we decided to combine our
subjects to evaluate bone marrow fat fractions and unsaturation.
Within the spine, there was a negative correlation between bone
marrow fat fraction and unsaturation (r = -0.40, p = 0.01;
Figure 5A). While in the distal femur, the total tibia and in
the proximal and distal tibia fat fraction and unsaturation were
positively correlated (distal femur: r = 0.42, p = 0.01, Figure 5B;
total tibia: r = 0.52, p = 0.05, data not shown; proximal tibia: r =
0.47 p = 0.002, Figure 5C; distal tibia: r = 0.35, p = 0.03
Figure 5D). No correlation between fat fraction and
Frontiers in Endocrinology | www.frontiersin.org 6
unsaturation was found at the other skeletal sites (pelvis: r =
0.16, p = 0.31; femur: r = -0.26 p = 0.37; proximal femur: -0.01,
p = 0.95; diaphysis of the femur: r -0.16, p = 0.58; and the
diaphysis of the tibia: r = 0.13, p = 0.43; data not shown).

A multiple linear regression model was used to predict the
outcome variable (fat fraction/SFF) based on unsaturation, age,
and gender and their interaction terms. Within the spine, age
and unsaturation were significant predictors of the fat fraction
(age: p < 0.001; ndb p = 0.02; R2 of 0.50); gender and interaction
terms were not significant predictors for the fat fraction in the
spine. In the distal femur, the total tibia, and the proximal and
distal tibia, only unsaturation was a significant predictor of the
fat fraction while gender, age, or interaction terms were not (ndb:
distal femur: p = 0.005, R2 0.23; total tibia: p = 0.03, R2 0.19;
proximal tibia: p = 0.002, R2 0.24; distal tibia: p = 0.02, R2 0.18).
DISCUSSION

To our knowledge, we are the first to report both BMAT
distribution and BMAT unsaturation, and the association
between BMAT and BMAT unsaturation, quantified
simultaneously with WFI-mGRE, in a large part of the
skeleton in a group of healthy subjects.

We show that BMAT increases from spine to tibia, from the
cervical to the lumbar spine, and from proximal to distal in
femora, while we show a small but significant decrease within
tibia. These patterns are consistent with literature (13–15, 27–31).
Furthermore, we confirm differences in the age-associated increase
in BMAT between male and female subjects (15, 29, 31). BMAT
within the femur and tibia does not increase with age in
male subjects, while in female subjects femoral BMAT does
A B

DC

FIGURE 4 | Correlations (Spearman’s rank correlation coefficient) between age and bone marrow fat fraction (SFF) in male (blue) and female (red) subjects. (A) Spinal
fat fraction and age were positively correlated in both male and female subjects. (B–D) Within the pelvis, femur, and proximal femur fat fraction and age were
positively correlated in female subjects but not in male subjects.
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increase with age. This could indicate that BMAT in the axial and
appendicular skeleton is differently regulated in female and male
subjects and suggests a role for sex steroids, as it is known that
exogenous estradiol can decrease BMAT (32, 33), and low
endogenous testosterone is associated with high BMAT in older
men (34). Changes in sex steroids with aging, and especially during
menopause in female subjects, could explain these gender
differences observed in femoral BMAT. Another explanation for
the gender difference at a younger age could be increased
hematopoietic demands in premenopausal women due to blood
loss during menstrual periods, as BMAT is also potentially linked to
erythropoiesis (35).

We show higher BMAT unsaturation within the axial
skeleton compared to the appendicular skeleton. Our results
are inconsistent with animal studies (18, 36), showing higher
unsaturation in areas of yellow bone marrow compared to red
bone marrow. However, few studies have quantified BMAT
unsaturation in both the axial and appendicular skeleton in
human subjects. Our results are consistent with a small study
by Badr and coworkers which showed higher unsaturation
within the pelvis compared to the proximal femur in young
female subjects, quantified by 1H-MRS (37). This could imply
that BMAT unsaturation in areas red bone marrow in the axial
skeleton and yellow bone marrow of the appendicular skeleton
might differ between human subjects and these animal models.
We showed that BMAT unsaturation was higher within the
femur compared to the tibia and that BMAT unsaturation was
higher within the diaphysis of the tibia and femur compared to
the proximal or distal metaphysis, but we found no gender- or
age-associated differences in BMAT unsaturation. Our results are
Frontiers in Endocrinology | www.frontiersin.org 7
comparable to a study by Bao who reported higher BMAT
unsaturation within the distal femur compared to the proximal
tibia, and no differences in BMAT unsaturation between young
male and female subjects (38). Our results partially differ from
the study by Scheller and coworkers in 5 young female subjects,
as they report higher BMAT unsaturation, measured using 1H-
MRS, within the tibia compared to the femur. However,
unsaturation was higher within the diaphysis of the tibia and
femur, although not significantly in the study by Scheller and
coworkers. The difference could be due to the sample size, or age
and gender differences, as Scheller and coworkers included only
5 young, female subjects, and we included both male and female
subjects with a larger age range (18). Other studies that
quantified BMAT unsaturation in proximal and distal skeletal
sites in human subjects show conflicting results, possibly due to
small sample sizes, and differences in age and gender of the
subject (39–41). To the best of our knowledge, there are no other
studies quantifying BMAT composition in both the axial and
appendicular skeleton in human subjects. Due to heterogeneity
in used imaging techniques, in scanner vendors, and in study
populations, results from different studies are hard to compare.
The negative correlation we found between BMAT and
unsaturation in the spine, consistent with a previous study (42),
opposed to the positive correlation between BMAT and
unsaturation we found within the appendicular skeleton (distal
femur, and proximal and distal tibia), could support the existence of
different types of BMAT in the axial versus appendicular skeleton,
also referred to as regulated and constitutive BMAT, as reviewed by
Craft et al. (43), with a distinct fatty acid composition and with
different effects on bone metabolism (44–48) and on skeletal
A B

DC

FIGURE 5 | Correlations (Pearson correlation coefficient) between bone marrow signal fat fractions (SFF) and unsaturation (number of double bonds ndb) in (A) the
spine, (B) the distal femur, (C) the proximal tibia and (D) the distal tibia.
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metastasis. Another potential explanation for the difference in
unsaturation between the axial and appendicular skeleton in
healthy subjects could be glucose metabolism as a recent study by
Suchacki and coworkers showed that BMAT glucose uptake was
higher within the axial skeleton compared to BMAT glucose uptake
within long bones (49).

Patients with osteoporosis and subjects with fractures have
lower unsaturation and higher saturation of their BMAT
compared to healthy subjects or subjects without fractures (10, 42).
In vitro research has shown that saturated fatty acids can increase
osteoclast differentiation, decrease osteoblastic differentiation, and
induce a pro-inflammatory response, while unsaturated fatty acids
could prevent these effects (50). Furthermore, BMAT could serve as
an energy depot for bone metabolism and bone metastasis. Although
most tumors depend on glycolysis for their energy supply, b-
oxidation of fatty acids can serve as a main source of energy for
some types of cancers (9). Tumor cells can stimulate lipolysis and the
secretion of free fatty acids by bone marrow adipocytes (51) and
overexpress lipid transporters to increase lipid uptake (52–54).
Furthermore, multiple enzymes of the desaturase pathway are
overexpressed in tumor cells of metastatic prostate cancer and
multiple myeloma; however, in the hypoxic environment of the
bone marrow the function of the enzyme stearoyl-CoA desaturase
is compromised and therefore the synthesis of monounsaturated fatty
acids. Under these hypoxic conditions, tumor cells can switch to
collecting unsaturated fatty acids from themicroenvironment (9), and
it could be proposed that, although highly speculative, the increased
unsaturated fatty acids we showwithin the spine and pelvis compared
to the femora and tibiamight be a part of the explanation why skeletal
metastases are preferentially located within the axial skeleton (55).
Furthermore, it could be postulated, again highly speculatively, that
the gender-associated differences in BMAT within the spine, pelvis,
and proximal femur, i.e., areas containing red bone marrow, could be
part of the explanation for the observation that female patients are less
likely to have skeletal metastasis (56) and more likely to develop
osteoporosis. Future research on the interaction between BMAT and
bone metabolism or skeletal metastasis should take these differences
between the axial and appendicular skeleton into consideration, as
results on BMAT acquired from the iliac crest might provide different
results compared to BMAT acquired from the proximal femur.

Our study has limitations. First, we did not compare theWFI-
mGRE to a reference method, like gas chromatography or 1H-
MRS. As subjects were included as part of a different study
protocol, data of the gradient echo MRI images were analyzed
retrospectively. Nevertheless, previous studies have
demonstrated good agreement between WFI-mGRE and 1H-
MRS (20, 22). A second limitation is that we measure the bone
marrow fat signal fraction instead of the corrected proton density
fat fraction (PDFF). Although we did use a multipeak fat
spectrum for the fit and corrected for T2* decay, we did not
correct for T1 bias. The relatively short T1 of fat compared to
water could cause higher fat fractions in areas where fat is less
than water or lower fat fractions when fat is higher than water
(57). Therefore, our results within the appendicular skeleton,
where fat is much higher than water, likely underestimate the
Frontiers in Endocrinology | www.frontiersin.org 8
actual PDFF. Fat and water fractions within the spine and pelvis
are more balanced, i.e., fat fractions closer to 50%, causing less T1
bias. Therefore, our results of the spine and pelvis are more
comparable to the actual PDFF. T1 bias increases with larger flip
angles. As we used a flip angle of 20° in our retrospective analysis,
T1 bias could be further reduced by using a smaller flip angle in
future studies. Last, our sample size is relatively small; therefore,
our subanalyses are likely subject to power issues. For example,
only 14, both premenopausal and postmenopausal, women were
included, which potentially influenced our results. Due to the
retrospective nature of our study, it was not powered for these
analyses. Therefore, future research should reproduce our data.

To conclude, we show that off-shelf GRE sequences can be
used to quantify BMAT and BMAT composition simultaneously,
in large parts of the skeleton. We describe the distribution of
BMAT and BMAT unsaturation within a group of healthy
subjects and report age- and gender-associated differences.
Contradicting previous animal studies, we show higher
unsaturation within the axial skeleton (i.e., red marrow)
compared to the appendicular skeleton (i.e., yellow marrow)
and we show opposing correlations between BMAT and BMAT
unsaturation when comparing the spine to the femur and tibia;
this could support the existence of two distinct types of BMAT
within the axial versus appendicular skeleton, potentially with
different interactions with its environment. Our results supply a
useful ground for future research on the interaction between
BMAT and different (patho)physiological processes like bone
metabolism and skeletal metastasis.
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