293 research outputs found

    Effect of Electron Beam Irradiation on Forensic Evidence. 2. Analysis of Writing Inks on Porous Surfaces

    Full text link
    The effect of electron beam irradiation on a series of different writing inks is described. As the anthrax-tainted letters were discovered in October 2001, the U.S. government began to experiment with the use of the electron beam irradiation process for destroying such biological agents. Plans initially considered a large-scale countrywide use of this technology. However, over time the scope of this plan as well as the radiation dosage were reduced, especially when some adverse consequences to mailed items subjected to this process were observed. Little data existed at the time to characterize what level of damage might be expected to occur with common items sent through the mail. This was especially important to museums and other institutions that routinely ship valuable and historic items through the mail. Although the Smithsonian Institution initiated some studies of the effect of electron beam irradiation on archived materials, little data existed on the effect that this process would have on forensic evidence. Approximately 97 different black, blue, red, green, and yellow writing inks were selected. Writing ink types included ballpoint, gel, plastic/felt tip, and rollerball. All noncontrol samples were subjected to standard mail irradiation conditions used by the U.S. Postal Service at the time this experiment was performed. A video spectral comparator and thin-layer chromatography (TLC) analysis were used to evaluate both the control and the irradiated samples. Some published studies reported changes in the presence/absence of dye bands in the chromatograms of irradiated writing inks. Some of these studies report the formation of additional dye bands on the chromatogram while others report missing dye bands. However, using standard testing guidelines and procedures, none of the 97 irradiated inks tested were found to show any significant optical or chemical differences from the control samples. In addition, random testing of some of the ink samples using a second solvent system did not reveal any changes. However, one control ink did show some minor changes in optical properties and dye characteristics over time (but not TLC) while the irradiated sample remained stable. Significant changes in the ultraviolet fluorescence characteristics of the irradiated paper samples themselves (not inks) were also observed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72704/1/j.1556-4029.2007.00404.x.pd

    The organisational and human resource challenges facing primary care trusts : protocol of a multiple case study

    Get PDF
    BACKGROUND: The study is designed to assess the organisational and human resource challenges faced by Primary Care Trusts (PCTs). Its objectives are to: specify the organisational and human resources challenges faced by PCTs in fulfilling the roles envisaged in government and local policy; examine how PCTs are addressing these challenges, in particular, to describe the organisational forms they have adopted, and the OD/HR strategies and initiatives they have planned or in place; assess how effective these structures, strategies and initiatives have been in enabling the PCTs to meet the organisational and human resources challenges they face; identify the factors, both internal to the PCT and in the wider health community, which have contributed to the success or failure of different structures, strategies and initiatives. METHODS: The study will be undertaken in three stages. In Stage 1 the key literature on public sector and NHS organisational development and human resources management will be reviewed, and discussions will be held with key researchers and policy makers working in this area. Stage 2 will focus on detailed case studies in six PCTs designed to examine the organisational and human resources challenges they face. Data will be collected using semi-structured interviews, group discussion, site visits, observation of key meetings and examination of local documentation. The findings from the case study PCTs will be cross checked with a Reference Group of up to 20 other PCG/Ts, and key officers working in organisational development or primary care at local, regional and national level. In Stage 3 analysis of findings from the preparatory work, the case studies and the feedback from the Reference Group will be used to identify practical lessons for PCTs, key messages for policy makers, and contributions to further theoretical development

    TGF-β inhibitor Smad7 regulates dendritic cell-induced autoimmunity

    Get PDF
    TGF-β is an anti-inflammatory cytokine whose signaling is negatively controlled by Smad7. Previously, we established a role for Smad7 in the generation of autoreactive T cells; however, the function of Smad7 in dendritic cells (DCs) remains elusive. Here, we demonstrate that DC-specific Smad7 deficiency resulted in elevated expression of the transcription factors Batf3 and IRF8, leading to increased frequencies of CD8(+)CD103(+) DCs in the spleen. Furthermore, Smad7-deficient DCs expressed higher levels of indoleamine 2,3-dioxygenase (IDO), an enzyme associated with tolerance induction. Mice devoid of Smad7 specifically in DCs are resistant to the development of experimental autoimmune encephalomyelitis (EAE) as a result of an increase of protective regulatory T cells (Tregs) and reduction of encephalitogenic effector T cells in the central nervous system. In agreement, inhibition of IDO activity or depletion of Tregs restored disease susceptibility. Intriguingly, when Smad7-deficient DCs also lacked the IFN-γ receptor, the mice regained susceptibility to EAE, demonstrating that IFN-γ signaling in DCs mediates their tolerogenic function. Our data indicate that Smad7 expression governs splenic DC subset differentiation and is critical for the promotion of their efficient function in immunity

    Identification and Characterization of the RLIP/RALBP1 Interacting Protein Xreps1 in Xenopus laevis Early Development

    Get PDF
    Background: The FGF/Ras/Ral/RLIP pathway is required for the gastrulation process during the early development of vertebrates. The Ral Interacting Protein (RLIP also known as RalBP1) interacts with GTP-bound Ral proteins. RLIP/RalBP1 is a modular protein capable of participating in many cellular functions. Methodology/Principal Findings: To investigate the role of RLIP in early development, a two-hybrid screening using a library of maternal cDNAs of the amphibian Xenopus laevis was performed. Xreps1 was isolated as a partner of RLIP/RalBP1 and its function was studied. The mutual interacting domains of Xreps1 and Xenopus RLIP (XRLIP) were identified. Xreps1 expressed in vivo, or synthesized in vitro, interacts with in vitro expressed XRLIP. Interestingly, targeting of Xreps1 or the Xreps1-binding domain of XRLIP (XRLIP(469–636)) to the plasma membrane through their fusion to the CAAX sequence induces a hyperpigmentation phenotype of the embryo. This hyperpigmented phenotype induced by XRLIP(469–636)-CAAX can be rescued by co-expression of a deletion mutant of Xreps1 restricted to the RLIP-binding domain (Xreps1(RLIP-BD)) but not by co-expression of a cDNA coding for a longer form of Xreps1. Conclusion/Significance: We demonstrate here that RLIP/RalBP1, an effector of Ral involved in receptor-mediated endocytosis and in the regulation of actin dynamics during embryonic development, also interacts with Reps1. Although these two proteins are present early during embryonic development, they are active only at the end of gastrulation. Ou

    Interferon-Alpha Mediates Restriction of Human Immunodeficiency Virus Type-1 Replication in Primary Human Macrophages at an Early Stage of Replication

    Get PDF
    Type I interferons (IFNα and β) are induced directly in response to viral infection, resulting in an antiviral state for the cell. In vitro studies have shown that IFNα is a potent inhibitor of viral replication; however, its role in HIV-1 infection is incompletely understood. In this study we describe the ability of IFNα to restrict HIV-1 infection in primary human macrophages in contrast to peripheral blood mononuclear cells and monocyte-derived dendritic cells. Inhibition to HIV-1 replication in cells pretreated with IFNα occurred at an early stage in the virus life cycle. Late viral events such as budding and subsequent rounds of infection were not affected by IFNα treatment. Analysis of early and late HIV-1 reverse transcripts and integrated proviral DNA confirmed an early post entry role for IFNα. First strand cDNA synthesis was slightly reduced but late and integrated products were severely depleted, suggesting that initiation or the nucleic acid intermediates of reverse transcription are targeted. The depletion of integrated provirus is disproportionally greater than that of viral cDNA synthesis suggesting the possibility of a least an additional later target. A role for either cellular protein APOBEC3G or tetherin in this IFNα mediated restriction has been excluded. Vpu, previously shown by others to rescue a viral budding restriction by tetherin, could not overcome this IFNα induced effect. Determining both the viral determinants and cellular proteins involved may lead to novel therapeutic approaches. Our results add to the understanding of HIV-1 restriction by IFNα
    corecore