20 research outputs found
Physical Unitarity for Massive Non-abelian Gauge Theories in the Landau Gauge: Stueckelberg and Higgs
We discuss the problem of unitarity for Yang-Mills theory in the Landau gauge
with a mass term a la Stueckelberg. We assume that the theory
(non-renormalizable) makes sense in some subtraction scheme (in particular the
Slavnov-Taylor identities should be respected!) and we devote the paper to the
study of the space of the unphysical modes. We find that the theory is unitary
only under the hypothesis that the 1-PI two-point function of the vector mesons
has no poles (at p^2=0). This normalization condition might be rather crucial
in the very definition of the theory. With all these provisos the theory is
unitary. The proof of unitarity is given both in a form that allows a direct
transcription in terms of Feynman amplitudes (cutting rules) and in the
operatorial form. The same arguments and conclusions apply verbatim to the case
of non-abelian gauge theories where the mass of the vector meson is generated
via Higgs mechanism. To the best of our knowledge, there is no mention in the
literature on the necessary condition implied by physical unitarity.Comment: References added. 22 pages. Final version to appear in the journa
Chiral bosonization for non-commutative fields
A model of chiral bosons on a non-commutative field space is constructed and
new generalized bosonization (fermionization) rules for these fields are given.
The conformal structure of the theory is characterized by a level of the
Kac-Moody algebra equal to where is the
non-commutativity parameter and chiral bosons living in a non-commutative
fields space are described by a rational conformal field theory with the
central charge of the Virasoro algebra equal to 1. The non-commutative chiral
bosons are shown to correspond to a free fermion moving with a speed equal to where is the speed of light. Lorentz
invariance remains intact if is rescaled by . The
dispersion relation for bosons and fermions, in this case, is given by .Comment: 16 pages, JHEP style, version published in JHE
Linear Collider Capabilities for Supersymmetry in Dark Matter Allowed Regions of the mSUGRA Model
Recent comparisons of minimal supergravity (mSUGRA) model predictions with
WMAP measurements of the neutralino relic density point to preferred regions of
model parameter space. We investigate the reach of linear colliders (LC) with
and 1 TeV for SUSY in the framework of the mSUGRA model. We find
that LCs can cover the entire stau co-annihilation region provided \tan\beta
\alt 30. In the hyperbolic branch/focus point (HB/FP) region of parameter
space, specialized cuts are suggested to increase the reach in this important
``dark matter allowed'' area. In the case of the HB/FP region, the reach of a
LC extends well past the reach of the CERN LHC. We examine a case study in the
HB/FP region, and show that the MSSM parameters and can be
sufficiently well-measured to demonstrate that one would indeed be in the HB/FP
region, where the lightest chargino and neutralino have a substantial higgsino
component.Comment: 29 pages, 15 EPS figures; updated version slightly modified to
conform with published versio
