569 research outputs found
First Steps towards Underdominant Genetic Transformation of Insect Populations
The idea of introducing genetic modifications into wild populations of insects to stop them from spreading diseases is more than 40 years old. Synthetic disease refractory genes have been successfully generated for mosquito vectors of dengue fever and human malaria. Equally important is the development of population transformation systems to drive and maintain disease refractory genes at high frequency in populations. We demonstrate an underdominant population transformation system in Drosophila melanogaster that has the property of being both spatially self-limiting and reversible to the original genetic state. Both population transformation and its reversal can be largely achieved within as few as 5 generations. The described genetic construct {Ud} is composed of two genes; (1) a UAS-RpL14.dsRNA targeting RNAi to a haploinsufficient gene RpL14 and (2) an RNAi insensitive RpL14 rescue. In this proof-of-principle system the UAS-RpL14.dsRNA knock-down gene is placed under the control of an Actin5c-GAL4 driver located on a different chromosome to the {Ud} insert. This configuration would not be effective in wild populations without incorporating the Actin5c-GAL4 driver as part of the {Ud} construct (or replacing the UAS promoter with an appropriate direct promoter). It is however anticipated that the approach that underlies this underdominant system could potentially be applied to a number of species.
Figure
How large should whales be?
The evolution and distribution of species body sizes for terrestrial mammals
is well-explained by a macroevolutionary tradeoff between short-term selective
advantages and long-term extinction risks from increased species body size,
unfolding above the 2g minimum size induced by thermoregulation in air. Here,
we consider whether this same tradeoff, formalized as a constrained
convection-reaction-diffusion system, can also explain the sizes of fully
aquatic mammals, which have not previously been considered. By replacing the
terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial
mammal tradeoff model accurately predicts, with no tunable parameters, the
observed body masses of all extant cetacean species, including the 175,000,000g
Blue Whale. This strong agreement between theory and data suggests that a
universal macroevolutionary tradeoff governs body size evolution for all
mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus
be attributed mainly to the increased convective heat loss is water, which
shifts the species size distribution upward and pushes its right tail into
ranges inaccessible to terrestrial mammals. Under this macroevolutionary
tradeoff, the largest expected species occurs where the rate at which
smaller-bodied species move up into large-bodied niches approximately equals
the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table
Addressing Cancer Disparities via Community Network Mobilization and Intersectoral Partnerships: A Social Network Analysis
Community mobilization and collaboration among diverse partners are vital components of the effort to reduce and eliminate cancer disparities in the United States. We studied the development and impact of intersectoral connections among the members of the Massachusetts Community Network for Cancer Education, Research, and Training (MassCONECT). As one of the Community Network Program sites funded by the National Cancer Institute, this infrastructure-building initiative utilized principles of Community-based Participatory Research (CBPR) to unite community coalitions, researchers, policymakers, and other important stakeholders to address cancer disparities in three Massachusetts communities: Boston, Lawrence, and Worcester. We conducted a cross-sectional, sociometric network analysis four years after the network was formed. A total of 38 of 55 members participated in the study (69% response rate). Over four years of collaboration, the number of intersectoral connections reported by members (intersectoral out-degree) increased, as did the extent to which such connections were reported reciprocally (intersectoral reciprocity). We assessed relationships between these markers of intersectoral collaboration and three intermediate outcomes in the effort to reduce and eliminate cancer disparities: delivery of community activities, policy engagement, and grants/publications. We found a positive and statistically significant relationship between intersectoral out-degree and community activities and policy engagement (the relationship was borderline significant for grants/publications). We found a positive and statistically significant relationship between intersectoral reciprocity and community activities and grants/publications (the relationship was borderline significant for policy engagement). The study suggests that intersectoral connections may be important drivers of diverse intermediate outcomes in the effort to reduce and eliminate cancer disparities. The findings support investment in infrastructure-building and intersectoral mobilization in addressing disparities and highlight the benefits of using CBPR approaches for such work
Disentangling astroglial physiology with a realistic cell model in silico
Electrically non-excitable astroglia take up neurotransmitters, buffer extracellular K+ and generate Ca2+ signals that release molecular regulators of neural circuitry. The underlying machinery remains enigmatic, mainly because the sponge-like astrocyte morphology has been difficult to access experimentally or explore theoretically. Here, we systematically incorporate multi-scale, tri-dimensional astroglial architecture into a realistic multi-compartmental cell model, which we constrain by empirical tests and integrate into the NEURON computational biophysical environment. This approach is implemented as a flexible astrocyte-model builder ASTRO. As a proof-of-concept, we explore an in silico astrocyte to evaluate basic cell physiology features inaccessible experimentally. Our simulations suggest that currents generated by glutamate transporters or K+ channels have negligible distant effects on membrane voltage and that individual astrocytes can successfully handle extracellular K+ hotspots. We show how intracellular Ca2+ buffers affect Ca2+ waves and why the classical Ca2+ sparks-and-puffs mechanism is theoretically compatible with common readouts of astroglial Ca2+ imaging
Effects of dopamine D2/D3 receptor antagonism on human planning and spatial working memory
Psychopharmacological studies in humans suggest important roles for dopamine (DA) D2 receptors in human executive functions, such as cognitive planning and spatial working memory (SWM). However, studies that investigate an impairment of such functions using the selective DA D2/3 receptor antagonist sulpiride have yielded inconsistent results, perhaps because relatively low doses were used. We believe we report for the first time, the effects of a higher (800 mg p.o.) single dose of sulpiride as well as of genetic variation in the DA receptor D2 gene (DA receptor D2 Taq1A polymorphism), on planning and working memory. With 78 healthy male volunteers, we apply a between-groups, placebo-controlled design. We measure outcomes in the difficult versions of the Cambridge Neuropsychological Test Automated Battery One-Touch Stockings of Cambridge and the self-ordered SWM task. Volunteers in the sulpiride group showed significant impairments in planning accuracy and, for the more difficult problems, in SWM. Sulpiride administration speeded response latencies in the planning task on the most difficult problems. Volunteers with at least one copy of the minor allele (A1+) of the DA receptor D2 Taq1A polymorphism showed better SWM capacity, regardless of whether they received sulpiride or placebo. There were no effects on blood pressure, heart rate or subjective sedation. In sum, a higher single dose of sulpiride impairs SWM and executive planning functions, in a manner independent of the DA receptor D2 Taq1A polymorphism.This research work was funded by a Core Award from the Medical Research Council and the Wellcome Trust to the Behavioural and Clinical Neuroscience Institute (MRC Ref G1000183; WT Ref 093875/Z/10/Z). Also supported by a Wellcome Trust Senior Investigator Award (104631/Z/14/Z) awarded to TWR. CE was supported by the Swiss National Science Foundation (PA00P1_134135) and the Vienna Science and Technology Fund (WWTF VRG13-007)
Effects of fatigue on trunk stability in elite gymnasts
The aim of the present study was to test the hypothesis that fatigue due to exercises performed in training leads to a decrement of trunk stability in elite, female gymnasts. Nine female gymnasts participated in the study. To fatigue trunk muscles, four series of five dump handstands on the uneven bar were performed. Before and after the fatigue protocol, participants performed three trials of a balancing task while sitting on a seat fixed over a hemisphere to create an unstable surface. A force plate tracked the location of the center of pressure (CoP). In addition, nine trials were performed in which the seat was backward inclined over a set angle and suddenly released after which the subject had to regain balance. Sway amplitude and frequency in unperturbed sitting were determined from the CoP time series and averaged over trials. The maximum displacement and rate of recovery of the CoP location after the sudden release were determined and averaged over trials. After the fatigue protocol, sway amplitude in the fore-aft direction was significantly increased (p = 0.03), while sway frequency was decreased (p = 0.005). In addition, the maximum displacement after the sudden release was increased (p = 0.009), while the rate of recovery after the perturbation was decreased (p = 0.05). Fatigue induced by series of exercises representing a realistic training load caused a measurable decrement in dynamic stability of the trunk in elite gymnasts
Association of childhood trauma with cognitive function in healthy adults: a pilot study
BACKGROUND: Animal and human studies suggest that stress experienced early in life has detrimental consequences on brain development, including brain regions involved in cognitive function. Cognitive changes are cardinal features of depression and posttraumatic stress disorder. Early-life trauma is a major risk factor for these disorders. Only few studies have measured the long-term consequences of childhood trauma on cognitive function in healthy adults. METHODS: In this pilot study, we investigated the relationship between childhood trauma exposure and cognitive function in 47 healthy adults, who were identified as part of a larger study from the general population in Wichita, KS. We used the Cambridge Neuropsychological Test Automated Battery (CANTAB) and the Wide-Range-Achievement-Test (WRAT-3) to examine cognitive function and individual achievement. Type and severity of childhood trauma was assessed by the Childhood Trauma Questionnaire (CTQ). Data were analyzed using multiple linear regression on CANTAB measures with primary predictors (CTQ scales) and potential confounders (age, sex, education, income). RESULTS: Specific CTQ scales were significantly associated with measures of cognitive function. Emotional abuse was associated with impaired spatial working memory performance. Physical neglect correlated with impaired spatial working memory and pattern recognition memory. Sexual abuse and physical neglect were negatively associated with WRAT-3 scores. However, the association did not reach the significance level of p < 0.01. CONCLUSIONS: Our results suggest that physical neglect and emotional abuse might be associated with memory deficits in adulthood, which in turn might pose a risk factor for the development of psychopathology
Free backbone carbonyls mediate rhodopsin activation
Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily. The free backbone C=O groups on helices H5 and H7 stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released, thus facilitating repacking of H5 and H7 onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles of prolines in membrane proteins
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
- …