12,389 research outputs found

    Charge exchange contribution to the decay of the ring current, measured by energetic neutral atoms (ENAs)

    Get PDF
    In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases

    Rocket spectrometer for investigation of the far ultraviolet solar spectrum

    Get PDF
    A rocket-borne Ebert spectrometer and telescope were used for analysis of the solar spectrum. The instrument was arranged in the high resolution line scanning mode. Selected emission lines between 1170 and 1640 A were scanned, and a complete wavelength scan was made from 1170 A to 1850 A. Accurate measurements were made of the line profiles of the He II lines at 1640 A, C IV lines at 1550 A, Si IV lines at 1400 A, C II lines at 1335 A, the N V lines at 1240 A, and the C III lines at 1175 A. Accurate intensity measurements of the quiet sun spectrum for wavelengths between 1174 A and 3220 A were obtained. Spectral resolution was better than 0.03 A over most of the range and spatial resolution was relatively low so that the observations are averaged over the chromospheric network. Plots of absolute intensity versus wave length were prepared for the full wavelength range of the observations

    Probing the cool ISM in galaxies via 21cm HI absorption

    Full text link
    Recent targeted studies of associated HI absorption in radio galaxies are starting to map out the location, and potential cosmological evolution, of the cold gas in the host galaxies of Active Galactic Nuclei (AGN). The observed 21 cm absorption profiles often show two distinct spectral-line components: narrow, deep lines arising from cold gas in the extended disc of the galaxy, and broad, shallow lines from cold gas close to the AGN (e.g. Morganti et al. 2011). Here, we present results from a targeted search for associated HI absorption in the youngest and most recently-triggered radio AGN in the local universe (Allison et al. 2012b). So far, by using the recently commissioned Australia Telescope Compact Array Broadband Backend (CABB; Wilson et al. 2011), we have detected two new absorbers and one previously-known system. While two of these show both a broad, shallow component and a narrow, deep component (see Fig. 1), one of the new detections has only a single broad, shallow component. Interestingly, the host galaxies of the first two detections are classified as gas-rich spirals, while the latter is an early-type galaxy. These detections were obtained using a spectral-line finding method, based on Bayesian inference, developed for future large-scale absorption surveys (Allison et al. 2012a).Comment: 1 page, 1 figure, published in Proceedings of IAU Symposium No. 29

    Shock Tube Determination of Autoionization Lifetime and Oscillator Strengths of the 352 3P 2Po-353P2 2S1/2 Doublet of Al I Scientific Report No. 2

    Get PDF
    Shock tube measurement of autoionization lifetime and oscillator strengths of states above first ionization potential for aluminu

    Global energetic neutral atom (ENA) measurements and their association with the Dst index

    Get PDF
    We present a new global magnetospheric index that measures the intensity of the Earth\u27s ring current through energetic neutral atoms (ENAs). We have named it the Global Energetic Neutral Index (GENI), and it is derived from ENA measurements obtained by the Imaging Proton Spectrometer (IPS), part of the Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD) experiment on the POLAR satellite. GENI provides a simple orbit-independent global sum of ENAs measured with IPS. Actual ENA measurements for the same magnetospheric state look different when seen from different points in the POLAR orbit. In addition, the instrument is sensitive to weak ion populations in the polar cap, as well as cosmic rays. We have devised a method for removing the effects of cosmic rays and weak ion fluxes, in order to produce an image of “pure” ENA counts. We then devised a method of normalizing the ENA measurements to remove the orbital bias effect. The normalized data were then used to produce the GENI. We show, both experimentally and theoretically the approximate proportionality between the GENI and the Dst index. In addition we discuss possible implications of this relation. Owing to the high sensitivity of IPS to ENAs, we can use these data to explore the ENA/Dst relationship not only during all phases of moderate geomagnetic storms, but also during quiescent ring current periods

    Experiential learning and cognitive tools:The impact of simulations on conceptual change in continuing healthcare education

    Get PDF
    Conceptual change involves the acquisition of new cognitive resources (e.g., mental models) for thinking, problem solving, and decision making. Conceptual change, especially the development of robust mental models related to complex phenomena, is essential in continuing healthcare education (including medicine, nursing, public health, and social work). Jonassen’s work related to mindtools (also known as cognitive tools) and conceptual change has been influential in the development of interactive simulations designed to foster experiential learning opportunities for healthcare professionals. Experiential learning results when people engage in purposeful reflection about their experiences. The experiences that foster the kind of reflection and meaning making necessary for new conceptual change can occur in the real world (e.g., stitching a wound) or in a virtual world (managing a cancer patient within an interactive multimedia simulation). Cognitive tools are ‘‘technologies that enhance the cognitive powers of human beings during thinking, problem solving, and learning’’ (Jonassen & Reeves, 1996, p. 693). This chapter reviews the literature on simulations as cognitive tools that enable experiential learning in support of conceptual change in continuing healthcare education. In addition, the chapter prescribes an educational design research agenda to advance the state-of-the-art of simulation development and theory in this area
    corecore