725 research outputs found

    A tale of two gyres: Contrasting distributions of dissolved cobalt and iron in the Atlantic Ocean during an Atlantic Meridional Transect (AMT-19).

    Get PDF
    Cobalt (Co) and iron (Fe) are essential for phytoplankton nutrition, and as such constitute a vital link in the marine biological carbon pump. Atmospheric deposition is an important, and in some places the dominant, source of trace elements (TEs) to the global ocean. Dissolved cobalt (dCo) and iron (dFe) were determined along an Atlantic Meridional Transect (AMT-19; Oct/Nov 2009) between 50°N and 40°S in the upper 150 m in order to investigate the behaviour and distribution of these two essential, bioactive TEs. During AMT-19, large differences in the distributions of dCo and dFe were observed. In the North Atlantic gyre provinces, extremely low mixed layer dCo concentrations (23 ± 9 pM) were observed, which contrasts with the relatively high mixed layer dFe concentrations (up to 1.0 nM) coincident with the band of highest atmospheric deposition (∼5–30°N). In the South Atlantic gyre, the opposite trend was observed, with relatively high dCo (55 ± 18 pM) observed throughout the water column, but low dFe concentrations (0.29 ± 0.08 nM). Given that annual dust supply is an order of magnitude greater in the North than the South Atlantic, the dCo distribution was somewhat unexpected. However, the distribution of dCo shows similarities with the distribution of phosphate (PO43−) in the euphotic zone of the Atlantic Ocean, where the North Atlantic gyre is characterised by chronically low PO4, and higher concentrations are observed in the South Atlantic gyre (Mather et al., 2008), suggesting the potential for a similar biological control of dCo distributions. Inverse correlations between dCo and Prochlorococcus abundance in the North Atlantic gyre provinces, combined with extremely low dCo where nitrogen fixation rates were highest (∼20–28°N), suggests the dominance of biological controls on dCo distributions. The contrasting dCo and dFe distributions in the North and South Atlantic gyres provides insights into the differences between the dominant controls on the distribution of these two bioactive trace metals in the central Atlantic Ocean

    Determining Atlantic Ocean province contrasts and variations

    Get PDF
    The Atlantic Meridional Transect (AMT) series of twenty-five cruises over the past twenty years has produced a rich depth-resolved biogeochemical in situ data resource consisting of a wealth of core variables. These multiple core datasets, key to the operation of AMT, such as temperature, salinity, oxygen and inorganic nutrients, are often only used as ancillary measurements for contextualising hypothesis-driven process studies. In this paper these core in situ variables, alongside data drawn from satellite Earth Observation (EO) and modelling, have been analysed to determine characteristic oceanic province variations encountered over the last twenty years on the AMT through the Atlantic Ocean. The EO and modelling analysis shows the variations of key environmental variables in each province, such as surface currents, the net heat flux and subsequent large scale biological responses, such as primary production. The in situ core dataset analysis allows the variation in features such as the tropical oxygen minimum zone to be quantified as well as showing clear contrasts between the provinces in nutrient stoichiometry. Such observations and relationships can be used within basin scale biogeochemical models to set realistic variation ranges

    Usefulness and acceptability of a standardised orientation and mobility training for partially-sighted older adults using an identification cane

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Orientation and mobility (O&M) training in using an identification (ID) cane is provided to partially-sighted older adults to facilitate independent functioning and participation in the community. Recently, a protocolised standardised O&M-training in the use of the ID cane was developed in The Netherlands. The purpose of this study is to assess the usefulness and acceptability of both the standardised training and the regular training for participants and O&M-trainers in a randomised controlled trial (NCT00946062).</p> <p>Methods</p> <p>The standardised O&M-training consists of two structured face-to-face sessions and one telephone follow-up, in which, in addition to the regular training, self-management and behavioural change techniques are applied. Questionnaires and interviews were used to collect data on the training’s usefulness, e.g. the population reached, self-reported benefits or achievements, and acceptability, e.g. the performance of the intervention according to protocol and participants’ exposure to and engagement in the training.</p> <p>Results</p> <p>Data was collected from 29 O&M-trainers and 68 participants. Regarding the self-reported benefits, outcomes were comparable for the standardised training and the regular training according the trainers and participants e.g., about 85% of the participants in both groups experienced benefits of the cane and about 70% gained confidence in their capabilities. Participants were actively involved in the standardised training. Nearly 40% of the participants in the standardised training group was not exposed to the training according to protocol regarding the number of sessions scheduled and several intervention elements, such as action planning and contracting.</p> <p>Conclusions</p> <p>The standardised and regular O&M-training showed to be useful and mostly acceptable for the partially-sighted older adults and trainers. Yet, a concern is the deviation from the protocol of the standardised O&M-training by the O&M-trainers regarding distinguishing elements such as action planning. Overall, participants appreciated both trainings and reported benefit.</p

    Nitrite regeneration in the oligotrophic Atlantic Ocean

    Get PDF
    The recycling of scarce nutrient resources in the sunlit open ocean is crucial to ecosystem function. Nitrification directs ammonium (NH+4) derived from organic matter decomposition towards the regeneration of nitrate (NO− 3), an important resource for photosynthetic primary producers. However, the technical challenge of making nitrification rate measurements in oligotrophic conditions combined with the remote nature of these environments means that data availability, and the understanding that provides, is limited. This study reports nitrite (NO−2) regeneration rate (RNO2– the first product of nitrification derived from NH+ 4 oxidation)over a 13 000 km transect within the photic zone of the Atlantic Ocean. These measurements, at relatively high resolution (order 300 km), permit the examination of interactions between RNO2 and environmental conditions that may warrant explicit development in model descriptions. At all locations we report measurable RNO2 with significant variability between and within Atlantic provinces. Statistical analysis indicated significant correlative structure between RNO2 and ecosystem variables, explaining ∼ 65 % of the data variability. Differences between sampling depths were of the same magnitude as or greater than horizontally resolved differences, identifying distinct biogeochemical niches between depth horizons. The best overall match between RNO2 and environmental variables combined chlorophyll-a concentration, light-phase duration, and silicate concentration (representing a short-term tracer of water column physical instability). On this basis we hypothesize that RNO2 is related to the short-term autotrophic production and heterotrophic decomposition of dissolved organic nitrogen (DON), which regenerates NH+4 and supports NH+4 oxidation. However, this did not explain the observation that RNO2 in the deep euphotic zone was significantly greater in the Southern Hemisphere compared to the Northern Hemisphere. We present the complimentary hypothesis that observations reflect the difference in DON concentration supplied by lateral transport into the gyre interior from the Atlantic’s eastern boundary upwelling ecosystems

    Organization of planktonic Tintinnina assemblages in the Atlantic Ocean

    Get PDF
    Marine plankton have different biogeographical distribution patterns. However, it is not clear how the entire plankton assemblage is composed of these species with distinct biogeographical patterns. Tintinnina (tintinnids) is single-celled planktonic protozoa commonly used as model organisms in planktonic studies. In this research, we investigated the organization of Tintinnina assemblages along the Atlantic Meridional Transect (AMT) spanning over 90 degrees of latitude during the 29th AMT cruise (2019). Tintinnina with high frequency of occurrence was classified into four biogeographic distribution patterns (equatorial, gyre, frontal, and deep Chl a maximum) according to their vertical and horizontal distribution. All species falling within each distribution pattern formed a sub-assemblage. Equatorial sub-assemblage dominated in upper waters of the equatorial zone and gyre centres. Equatorial and frontal sub-assemblages co-dominated in upper waters of the frontal zones. Deep Chlorophyll a maximum Layer (DCM) sub-assemblage dominated in the DCM waters. Some Tintinnina species with high abundance could be used as indicator species of sub-assemblages. The Tintinnina assemblages in the northern and southern hemispheres exhibited asymmetry in terms of species composition. The latitudinal gradient of Tintinnina species richness was bimodal, which was shaped by the superposition of the species number of the four sub-assemblages with latitude. The result of this study contributes to the understanding of Tintinnina assemblage in the equatorial zone and subtropical gyres of the Pacific and Indian Ocean. It is also valuable for predicting the influence of global warming on changes in Tintinnina distribution and species richness

    Biomanufacture of nano-Pd(0) by Escherichia coli and electrochemical activity of bio-Pd(0) made at the expense of H2 and formate as electron donors

    Get PDF
    Objective: Palladised cells of Desulfovibrio desulfuricans and Shewanella oneidensis have been reported as fuel cell electrocatalysts but growth at scale may be unattractive/costly; we have evaluated the potential of using E. coli, using H2/formate for Pd-nanoparticle manufacture. Results: Using ‘bio-Pd’ made under H2 (20 wt%) cyclic voltammograms suggested electrochemical activity of bio-NPs in a native state, attributed to proton adsorption/desorption. Bio-Pd prepared using formate as the electron donor gave smaller, well separated NPs; this material showed no electrochemical properties, and hence little potential for fuel cell use using a simple preparation technique. Bio-Pd on S. oneidensis gave similar results to those obtained using E. coli. Conclusion: Bio-Pd is sufficiently conductive to make an E. coli-derived electrochemically active material on intact, unprocessed bacterial cells if prepared at the expense of H2, showing potential for fuel cell applications using a simple one-step preparation method

    Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses

    Get PDF
    Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response

    Astrobiological Complexity with Probabilistic Cellular Automata

    Full text link
    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo
    corecore