236 research outputs found

    An experimental proposal to study collapse of the wave function in travelling-wave parametric amplifiers

    Full text link
    The read-out of a microwave qubit state occurs using an amplification chain that enlarges the quantum state to a signal detectable with a classical measurement apparatus. However, at what point in this process did we really `measure' the quantum state? In order to investigate whether the `measurement' takes place in the amplification chain, we propose to construct a microwave interferometer that has a parametric amplifier added to each of its arms. Feeding the interferometer with single photons, the visibility depends on the gain of the amplifiers and whether a measurement collapse has taken place during the amplification process. We calculate the interference visibility as given by standard quantum mechanics as a function of gain, insertion loss and temperature and find a magnitude of 1/31/3 in the limit of large gain without taking into account losses. This number reduces to 0.260.26 in case the insertion loss of the amplifiers is 2.22.2 dB at a temperature of 5050 mK. We show that if the wave function collapses within the interferometer, we will measure a reduced visibility compared to the prediction from standard quantum mechanics once this collapse process sets in.Comment: 21 pages and 23 figures (including appendices and subfigures). v4: Abstract and introduction rewritten and note on stochasticity of quantum state collapse added to section 6. v5: no content changes w.r.t. v

    Efferent connections of dorsal and ventral agranular insular cortex in the hamster, Mesocricetus auratus

    Full text link
    The anterior portion of rodent agranular insular cortex consists of a ventral periallocortical region (AIv) and a dorsal proisocortical region (AId). Each of these two cortical areas has distinct efferent connections, but in certain brain areas their projection fields are partially or wholly overlapping. Bilateral projections to layers I, III and VI of medial frontal cortex originate in the dorsal agranular insular cortex and terminate in the prelimbic, anterior cingulate and medial precentral areas; those originating in ventral agranular insular cortex terminate in the medial orbital, infralimbic and prelimbic areas. The dorsal and ventral regions of the agranular insular cortex project topographically to the ipsilateral cortex bordering the rhinal fissure, which includes the posterior primary olfactory, posterior agranular insular, perirhinal and lateral entorhinal areas. Fibers to these lateral cortical areas were found to travel in a cell-free zone, between cortical layer VI and the claustrum, which corresponds to the extreme capsule. The dorsal and ventral regions send commissural projections to layer I, lamina dissecans and outer layer V, and layer VI of the contralateral homotopical cortex, via the corpus callosum. Projections from the ventral and dorsal regions of the agranular insular cortex to the caudatoputamen are topographically arranged and terminate in finger-like patches. The ventral, but not the dorsal region, projects to the ventral striatum and ventral pallidum. The thalamic projections of the ventral and dorsal regions are largely overlapping, with projections from both to the ipsilateral reticular nucleus and bilaterally to the rhomboid, mediodorsal, gelatinosus and ventromedial nuclei. The heaviest projection is that to the full anteroposterior extent of the medial segment of the mediodorsal nucleus. Brainstem areas receiving projections from the ventral and dorsal regions include the lateral hypothalamus, substantia nigra pars compacta, ventral tegmental area and dorsal raphe nucleus. In addition, the ventral region projects to the periaqueductal gray and the dorsal region projects to the parabrachial and ventral pontine nuclei.These efferent connections largely reciprocate the afferent connections of the ventral and dorsal agranular insular cortex, and provide further support for the concept that these regions are portions of an outer ring of limbic cortex which plays a critical role in the expression of motivated, species-typical behaviors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23826/1/0000065.pd

    Detection of hydrodynamic stimuli by the postcranial body of Florida manatees (Trichechus manatus latirostris) A Neuroethology, sensory, neural, and behavioral physiology

    Get PDF
    Manatees live in shallow, frequently turbid waters. The sensory means by which they navigate in these conditions are unknown. Poor visual acuity, lack of echo- location, and modest chemosensation suggest that other modalities play an important role. Rich innervation of sen- sory hairs that cover the entire body and enlarged soma- tosensory areas of the brain suggest that tactile senses are good candidates. Previous tests of detection of underwater vibratory stimuli indicated that they use passive movement of the hairs to detect particle displacements in the vicinity of a micron or less for frequencies from 10 to 150 Hz. In the current study, hydrodynamic stimuli were created by a sinusoidally oscillating sphere that generated a dipole field at frequencies from 5 to 150 Hz. Go/no-go tests of manatee postcranial mechanoreception of hydrodynamic stimuli indicated excellent sensitivity but about an order of magnitude less than the facial region. When the vibrissae were trimmed, detection thresholds were elevated, suggest- ing that the vibrissae were an important means by which detection occurred. Manatees were also highly accurate in two-choice directional discrimination: greater than 90% correct at all frequencies tested. We hypothesize that mana- tees utilize vibrissae as a three-dimensional array to detect and localize low-frequency hydrodynamic stimul

    A Hydrodynamic Model of Alfvénic Wave Heating in a Coronal Loop and Its Chromospheric Footpoints

    Get PDF
    Alfv\'enic waves have been proposed as an important energy transport mechanism in coronal loops, capable of delivering energy to both the corona and chromosphere and giving rise to many observed features, of flaring and quiescent regions. In previous work, we established that resistive dissipation of waves (ambipolar diffusion) can drive strong chromospheric heating and evaporation, capable of producing flaring signatures. However, that model was based on a simplified assumption that the waves propagate instantly to the chromosphere, an assumption which the current work removes. Via a ray tracing method, we have implemented traveling waves in a field-aligned hydrodynamic simulation that dissipate locally as they propagate along the field line. We compare this method to and validate against the magnetohydrodynamics code Lare3D. We then examine the importance of travel times to the dynamics of the loop evolution, finding that (1) the ionization level of the plasma plays a critical role in determining the location and rate at which waves dissipate; (2) long duration waves effectively bore a hole into the chromosphere, allowing subsequent waves to penetrate deeper than previously expected, unlike an electron beam whose energy deposition rises in height as evaporation reduces the mean-free paths of the electrons; (3) the dissipation of these waves drives a pressure front that propagates to deeper depths, unlike energy deposition by an electron beam.Comment: Accepted to Ap

    Alfvénic wave heating of the upper chromosphere in flares

    Get PDF
    We have developed a numerical model of flare heating due to the dissipation of Alfv\'enic waves propagating from the corona to the chromosphere. With this model, we present an investigation of the key parameters of these waves on the energy transport, heating, and subsequent dynamics. For sufficiently high frequencies and perpendicular wave numbers, the waves dissipate significantly in the upper chromosphere, strongly heating it to flare temperatures. This heating can then drive strong chromospheric evaporation, bringing hot and dense plasma to the corona. We therefore find three important conclusions: (1) Alfv\'enic waves, propagating from the corona to the chromosphere, are capable of heating the upper chromosphere and the corona, (2) the atmospheric response to heating due to the dissipation of Alfv\'enic waves can be strikingly similar to heating by an electron beam, and (3) this heating can produce explosive evaporation.Comment: Accepted to ApJ
    • …
    corecore