33 research outputs found

    Effects of Lipid-Lowering Drugs on Irisin in Human Subjects In Vivo and in Human Skeletal Muscle Cells Ex Vivo

    Get PDF
    Context and Objective The myokine irisin has been proposed to regulate energy homeostasis. Little is known about its association with metabolic parameters and especially with parameters influencing pathways of lipid metabolism. In the context of a clinical trial, an exploratory post hoc analysis has been performed in healthy subjects to determine whether simvastatin and/or ezetimibe influence serum irisin levels. The direct effects of simvastatin on irisin were also examined in primary human skeletal muscle cells (HSKMCs). Design and Participants A randomized, parallel 3-group study was performed in 72 men with mild hypercholesterolemia and without apparent cardiovascular disease. Each group of 24 subjects received a 14-day treatment with either simvastatin 40 mg, ezetimibe 10 mg, or their combination. Results: Baseline irisin concentrations were not significantly correlated with age, BMI, estimated GFR, thyroid parameters, glucose, insulin, lipoproteins, non-cholesterol sterols, adipokines, inflammation markers and various molecular markers of cholesterol metabolism. Circulating irisin increased significantly in simvastatin-treated but not in ezetimibe-treated subjects. The changes were independent of changes in LDL-cholesterol and were not correlated with changes in creatine kinase levels. In HSKMCs, simvastatin significantly increased irisin secretion as well as mRNA expression of its parent peptide hormone FNDC5. Simvastatin significantly induced cellular reactive oxygen species levels along with expression of pro- and anti-oxidative genes such as Nox2, and MnSOD and catalase, respectively. Markers of cellular stress such as atrogin-1 mRNA and Bax protein expression were also induced by simvastatin. Decreased cell viability and increased irisin secretion by simvastatin was reversed by antioxidant mito-TEMPO, implying in part that irisin is secreted as a result of increased mitochondrial oxidative stress and subsequent myocyte damage. Conclusions: Simvastatin increases irisin concentrations in vivo and in vitro. It remains to be determined whether this increase is a result of muscle damage or a protective mechanism against simvastatin-induced cellular stress. Trial Registration ClinicalTrials.gov NCT00317993 NCT00317993

    The effect of BPIFA1/SPLUNC1 genetic variation on its expression and function in asthmatic airway epithelium

    Get PDF
    Bacterial permeability family member A1 (BPIFA1), also known as short palate, lung, and nasal epithelium clone 1 (SPLUNC1), is a protein involved in the antiinflammatory response. The goal of this study was to determine whether BPIFA1 expression in asthmatic airways is regulated by genetic variations, altering epithelial responses to type 2 cytokines (e.g., IL-13). Nasal epithelial cells from patients with mild to severe asthma were collected from the National Heart, Lung. and Blood Institute Severe Asthma Research Program centers, genotyped for rs750064, and measured for BPIFA1. To determine the function of rs750064, cells were cultured at air-liquid interface and treated with 11-13 with or without recombinant human BPIFA1 (rhBPIFA1). Noncultured nasal cells with the rs750064 CC genotype had significantly less BPIFA1 mRNA expression than the CT and TT genotypes. Cultured CC versus CT and TT cells without stimulation maintained less BPIFA1 expression. With IL-13 treatment, CC genotype cells secreted more eotaxin-3 than CT and TT genotype cells. Also, rhBPIFA1 reduced IL-13-mediated eotaxin-3. BPIFA1 mRNA levels negatively correlated with serum IgE and fractional exhaled nitric oxide. Baseline FEV1% levels were lower in the asthma patients with the CC genotype (n = 1,016). Our data suggest that less BPIFA1 in asthma patients with the CC allele may predispose them to greater eosinophilic inflammation, which could be attenuated by rhBPIFA1 protein therapy.NIH/NHLBI [R01HL125128, U10HL109257, UL1TR00448, U10HL109168]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Circadian oscillator proteins across the kingdoms of life : Structural aspects 06 Biological Sciences 0601 Biochemistry and Cell Biology

    Get PDF
    Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms and control numerous biological processes in a range of organisms. These periodic rhythms are the result of a complex interplay of interactions among clock components. These components are specific to the organism but share molecular mechanisms that are similar across kingdoms. The elucidation of clock mechanisms in different kingdoms has recently started to attain the level of structural interpretation. A full understanding of these molecular processes requires detailed knowledge, not only of the biochemical and biophysical properties of clock proteins and their interactions, but also the three-dimensional structure of clockwork components. Posttranslational modifications (such as phosphorylation) and protein-protein interactions, have become a central focus of recent research, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. The three-dimensional structures for the cyanobacterial clock components are well understood, and progress is underway to comprehend the mechanistic details. However, structural recognition of the eukaryotic clock has just begun. This review serves as a primer as the clock communities move towards the exciting realm of structural biology

    Therapeutic Effects of α1-Antitrypsin on Psedumonas aeruginosa Infection in ENaC Transgenic Mice.

    No full text
    Cystic fibrosis (CF) is a genetic disease with many airway pathological features, including aberrant epithelial sodium channel (ENaC) function, persistent Pseudomonas aeruginosa (PA) infection and neutrophil-dominant inflammation. PA infection in CF airways is difficult to treat due to antibiotic resistance and other factors. Recently, α1-antitrypsin (A1AT) have been shown to be effective to reduce CF airway PA infection. However, there is a dearth of studies about the mechanisms underlying A1AT's therapeutic effects. The goal of our study is to provide an animal model of A1AT therapy in CF lungs. ENaC transgenic mice with PA infection were used as a CF-like model. Mice were intratracheally treated with PA or saline (control) in a fibrin plug. Two hours after PA infection, aerosolized A1AT were delivered to mouse lungs once daily. At day 1 and day 3 post PA infection, lung inflammation, PA load as well as host defence protein short palate, lung, and nasal epithelium clone 1 (SPLUNC1) were measured. At day 1 post PA infection when A1AT was delivered once to ENaC transgenic mouse lungs, A1AT did not reduce lung inflammation (e.g., neutrophils) and PA load. However, at day 3 post PA infection when ENaC transgenic mice received three repeated A1AT treatments, a significant decrease in airspace inflammation and PA load was observed. Although A1AT prevented the loss of SPLUNC1 in bronchoalveolar lavage fluid of PA-infected wild-type mice, it did not restore SPLUNC1 levels in ENaC transgenic mice. Our current study has provided a valid and quick A1AT therapeutic model in CF-like lungs that may serve as a platform for future mechanistic studies about how A1AT exerts beneficial effects in human CF patients

    Representative lung tissue histopathology pictures (H&E staining; magnification, x200) from ENaC transgenic mice.

    No full text
    <p>Mice were not infected with <i>Pseudomonas aeruginosa</i> (PA) or infected with PA in the presence or absence of alpha1 antitrypsin (A1AT) treatment. After 3 days of PA infection, mouse lungs were processed for evaluation of histopathology as described in Materials and Methods. BSA = bovine serum albumin, serving as a protein control for A1AT. ALE = airway luminal exudates.</p

    Effects of alpha1 antitrypsin (A1AT) on neutrophil elastase (NE) activity in the lung.

    No full text
    <p>Lung tissues from wild-type (A, n = 6 mice/group) and ENaC transgenic mice at day 1 (B, n = 6–8 mice/group) and at day 3 (C, n = 5–7 mice/group) post <i>Pseudomonas aeruginosa</i> (PA) infection were collected and homogenized to measure NE activity. BSA = bovine serum albumin, serving as a protein control for A1AT. Data are presented as means ± SEM.</p

    Effects of alpha1 antitrypsin (A1AT) on SPLUNC1 protein levels in bronchoalveolar lavage (BAL) fluid of ENaC transgenic mice after 1 day of infection.

    No full text
    <p>Mice were infected with <i>Pseudomonas aeruginosa</i> (PA) as described in Materials and Methods, and treated at 2 hr post PA infection with A1AT. After 1 day of PA infection, mice (n = 6–8 mice/group) were sacrificed to determine SPLUNC1 protein levels in BAL fluid by using Western blot. BSA = bovine serum albumin, serving as a protein control for A1AT. Data are presented as means ± SEM.</p

    Effects of alpha1 antitrypsin (A1AT) on lung inflammation and <i>Pseudomonas aeruginosa</i> (PA) load in wild-type mice after 1 day of infection.

    No full text
    <p>Mice were infected with PA as described in Materials and Methods, and treated at 2 h post PA infection with A1AT. After 1 day of PA infection, mice (n = 6 mice/group) were sacrificed to determine inflammation (A, B, C, D) and PA load (E, F) in bronchoalveolar lavage (BAL) fluid and lung tissue. BSA = bovine serum albumin, serving as a protein control for A1AT. Data are presented as means ± SEM.</p
    corecore