6 research outputs found

    Self-assembling peptides as biofunctional component in medical fabrics

    Get PDF
    The importance of medical fabrics is reflected by increased clinical need and consumption over the past decade in the health and medical sectors. Medical fabric products, including wound dressings, are currently defined as ‘medical devices’ by European legislation. To ensure effectiveness as a wound dressing, these fabrics should assist the repair process by providing sufficient protection against bacterial spread in the wound bed. Chronic wounds are an increasingly urgent health problem, owing to the rising population of elderly, obese and diabetic patients. When treating such wounds with drug releasing dressings, the immediate release of the drug is a common limitation. Thus, the development of smart drug delivery dressings that release antibacterial agents into the wound bed when required would be a useful aid in medicine. The overall aim of this study was to develop a wound dressing that was able to release the antibacterial agents only in the presence of bacteria. Medical dressings were treated with pH-responsive, self-assembling peptides as antibacterial carriers that were able to release the loaded drug when stimulated by the bacterial pH. A methodology developed for potential future medical application is presented. The preliminary design consisted of three stages. First, the self-assembled peptide candidates were studied and selected as drug carriers. Second, fabrics were treated with the selected self-assembled peptides using two different methods: (1) coating with the peptides from the outer surface by impregnating in peptide solution and (2) incorporating the self-assembled peptides within the structure by electrospinning. The treatment success of the dressing was investigated using a series of complementary techniques such as FTIR, TEM, SEM and CLSM. Third, potential effectiveness of the dressings was assessed in vitro using two antibiotics model, vancomycin and levofloxacin separately, against a Staphylococcus epidermidis bacterial strain, a species commonly found in infected wounds. The study findings clearly demonstrated the in vitro potential of self-assembling peptide technology in improving the function of medical fabrics

    Antibacterial activity of metallic-core gold and silver nanoparticles against some animal pathogens

    Get PDF
    The current work aimed to find substitutes for antibiotics because of the side effects of antibacterial agents and the expansion of bacterial resistance to these agents. The scope of this study was to evaluate the antibacterial activity of gold and silver nanoparticles (AuNPs and AgNPs) against selected animal pathogens (Staphylococcus aureus, Klebsiella pneumonia, Streptococcus pneumoniae, Escherichia coli, Bacillus abortus and Mycobacterium bovis). The synthesized nanoparticles were distinguished by scanning electron microscopy (SEM) analysis and tested for antibacterial activity with the broth microdilution method, well diffusion assay, and minimum bactericidal concentration procedure. Results showed that both AuNPs and AgNPs displayed good antibacterial activity against all tested bacteria. The strongest antibacterial action of AgNPS (18 mm) was contra E. coli. AuNPs displayed good antibacterial activity against S. aureus and B. bovis with a suppression area of 14 mm. Therefore, it is suggested that AgNPs and AuNPs could be effectively used against animal pathogens and may contribute to reducing antibiotic resistance. However, there is a need for further research on the in vivo toxicity and mechanisms of action of AuNPs and AgNPs

    Hepatoprotective effect of taxifolin on cyclophosphamide-induced oxidative stress, inflammation, and apoptosis in mice: Involvement of Nrf2/HO-1 signaling

    Get PDF
    Taxifolin (TA) is a natural flavonoid found in many foods and medicinal plants with well-documented antioxidant and anti-inflammatory properties. Cyclophosphamide (CP) is an effective antineoplastic and immunosuppressive agent; however, it is associated with numerous adverse events, including hepatotoxicity. Herein, we aimed to investigate the potential protective effects of TA using a mouse model of CP-induced hepatotoxicity. Mice were co-treated with TA (25 and 50 mg/kg, orally) and CP (30 mg/kg, i.p.) for 10 consecutive days and sacrificed 24 hours later. CP induced increased transaminases (ALT and AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) paralleled with pronounced histopathological alterations in the liver. Moreover, hepatic tissues of CP-injected mice showed increased malondialdehyde (MDA), protein carbonyl, and nitric oxide (NO) levels, accompanied by decreased antioxidant defenses (glutathione [GSH], superoxide dismutase [SOD], and catalase [CAT]). Livers of CP-injected mice also showed increased inflammatory response (nuclear transcription factor kappa-B [NF-κB] p65 activation, increased levels of proinflammatory cytokines tumor necrosis factor alpha [TNF-α], interleukin 1 beta [IL-1β], and IL-6) and apoptosis (decreased Bcl-2 and increased Bax and caspase-3 expression levels). Remarkably, TA ameliorated markers of liver injury and histological damage in CP-injected mice. TA treatment also attenuated numerous markers of oxidative stress, inflammation, and apoptosis in the liver of CP-injected mice. This was accompanied by increased nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) expression in the liver tissues of CP-injected mice. Taken together, this study indicates that TA may represent a promising new avenue to prevent/treat CP-induced hepatotoxicity and perhaps other liver diseases associated with oxidative stress and inflammation

    Chondroprotective Effects of Grapefruit (Citrus paradisi Macfad.) Juice in a Complete Freund’s Adjuvant Rat Model of Knee Osteoarthritis

    No full text
    Osteoarthritis (OA) is a common disorder that can affect any joint in the human body. This study aimed to examine the anti-arthritic properties of high and low doses of grapefruit juice (GFJ), as grapefruit appears to contain anti-inflammatory biochemicals. Forty male Sprague–Dawley rats weighing 170–180 g were divided into five groups. These groups comprised the untreated control group and osteoarthritic (Osteo) rats administered intra-articular injections of Freund’s complete adjuvant (CFA; 0.5 mL; 1 mg/mL) as follows: OA rats administered low doses of GFJ (Osteo+GFJ (low); 5 mL/kg body weight (BW)); OA rats administered high doses of GFJ (Osteo+GFJ (high); 27 mL/kg BW); and OA rats administered diclofenac sodium (Osteo+Diclo) as a reference drug. Injections of CFA induced OA, as indicated by a significant increase in the serum levels of the inflammatory biomarkers C-reactive protein (CRP), interleukin-1β (IL-1β), and (prostaglandin (PGE2), as well as matrix metalloproteinases (MMP-1) and cathepsin K. The synovial levels of glycosaminoglycans (GAGs), tumor necrosis factor (TNF-α), and interleukin 6 (IL-6) also increased, with a concomitant reduction in osteocalcin levels. The administration of either high or low doses of GFJ reduced CRP, IL-1β, PGE2, MMP-1, cathepsin K, and osteocalcin while increasing the synovial levels of GAGs, TNF-α, and IL-6, slowing cartilage degradation and boosting joint function. The results showed comparable histopathological and biochemical responses. A comparison of the treatments showed that high-dose GFJ had a greater chondroprotective effect than low-dose GFJ

    A Structurally Self-Assembled Peptide Nano-Architecture by One-Step Electrospinning

    Get PDF
    Self-assembling peptides (SAPs) have been shown to offer great promise in therapeutics and have the ability to undergo self-assembly and form ordered nanostructures. However SAP gels are often associated with inherent weak and transient mechanical properties and incorporation of them into polymeric matrices is a route to enhance their mechanical stability. The aim of this work was to incorporate P11-8 peptide (CH3COQQRFOWOFEQQNH2) within poly(ε-caprolactone) (PCL) fibrous webs via one-step electrospinning, aiming to establish the underlying relationships between spinning process, molecular peptide conformation, and material internal architecture. Electrospinning of PCL solutions (6% w/w) in hexafluoro-2-propanol (HFIP) containing up to 40 mg mL−1 P11-8 resulted in the formation of fibres in both nano- (10–100 nm) and submicron range (100–700 nm), in contrast to PCL only webs, which displayed a predominantly submicron fibre distribution. FTIR and CD spectroscopy on both PCL/peptide solutions and resulting electrospun webs revealed monomeric and β-sheet secondary conformation, respectively, suggesting the occurrence of peptide self-assembly during electrospinning due to solvent evaporation. The peptide concentration (0 → 40 mg mL−1) was found to primarily affect the internal structure of the fabric at the nano-scale, whilst water as well as cell culture medium contact angles were dramatically decreased. Nearly no cytotoxic response (>90% cell viability) was observed when L929 mouse fibroblasts were cultured in contact with electrospun peptide loaded samples. This novel nanofibrous architecture may be the basis for an interesting material platform for e.g. hard tissue repair, in light of the presence of the self-assembled P11-8 in the PCL fibrous structure

    The Influence of a Nanoemulsion of Cardamom Essential Oil on the Growth Performance, Feed Utilization, Carcass Characteristics, and Health Status of Growing Rabbits under a High Ambient Temperature

    No full text
    Recently, nanotechnology approaches have been employed to enhance the solubility, availability, and efficacy of phytochemicals, overcoming some industrial obstacles and natural biological barriers. In this regard, 120 clinically healthy growing V-line rabbits (5 weeks old) reared during the summer season were divided randomly into four equal experimental groups (30 rabbits each). The first group received a basal diet without the supplementation of the nanoemulsion of cardamom essential oil (NCEO) (0 g/kg diet) and served as a control (NCEO 0). The other groups were given diets containing NCEO at levels of 150 (NCEO 150), 300 (NCEO 300), and 600 (NCEO 600) mg/kg diet, respectively. The growth performance (higher LBW and ADG), feed utilization (lower FCR), dressing percentage, and relative weight of the liver were improved significantly in the NCEO-treated groups compared to the control group. Moreover, the dietary treatment significantly decreased the rectum temperature and respiration rate, minimizing the 350 and 325 mg NECO/kg diets. The erythrocyte count, hematocrit, and hemoglobin concentration were significantly increased (p p = 0.0200) in the NCEO300 and NCEO600 groups compared to the control group. Treatment with 300 or 600 mg NCEO/kg significantly increased the blood serum total protein and albumin compared to the control group. Meanwhile, the liver enzymes (AST and ALT), uric acid, and creatinine concentrations decreased significantly in the NCEO300 group compared to the control group. The concentrations of triglycerides and total cholesterol were reduced significantly by the dietary treatment. The total antioxidant capacity, dismutase activity, and glutathione concentration were significantly higher, while the malondialdehyde and protein carbonyl levels were significantly lower in the NCEO300 group than in the control. The inflammatory responses and immunity statuses were improved in the blood serum of the NCEO-treated rabbits compared to the control. Heat-stress-induced pathological perturbations in renal/hepatic tissues and NCEO co-treatment successfully re-established and recovered near-control renal–hepatic morphology. In conclusion, a dietary supplementation of NCEO (300 mg/kg) could effectively enhance growing rabbits’ growth indices, feed efficiency, redox balance, immunity, and inflammatory responses during the summer
    corecore