915 research outputs found

    The Unpredictability of the Most Energetic Solar Events

    Full text link
    Observations over the past two solar cycles show a highly irregular pattern of occurrence for major solar flares, gamma-ray events, and solar energetic particle (SEP) fluences. Such phenomena do not appear to follow the direct indices of solar magnetic activity, such as the sunspot number. I show that this results from the non-Poisson occurrence for the most energetic events. This Letter also points out a particularly striking example of this irregularity in a comparison between the declining phases of the recent two solar cycles (1993-1995 and 2004-2006, respectively) and traces it through the radiated energies of the flares, the associated SEP fluences, and the sunspot areas. These factors suggest that processes in the solar interior involved with the supply of magnetic flux up to the surface of the Sun have strong correlations in space and time, leading to a complex occurrence pattern that is presently unpredictable on timescales longer than active region lifetimes (weeks) and not correlated well with the solar cycle itself.Comment: 4 page

    Suicide Fads: Frequency and Characteristics of Hydrogen Sulfide Suicides in the United States

    Get PDF
    Objective: To assess the frequency of hydrogen sulfide (H2S) suicides and describe the characteristics of victims in the United States (U.S.) since the technique became common in Japan in 2007.Methods: To ascertain the frequency of intentional H2S related deaths in the U.S. prior to the start of the Japanese trend in 2007, we searched the multiple-cause-of-death data from the National Vital Statistics System. To collect as much information about the victims as possible, we sent an email to the National Association of Medical Examiners (NAME) listserv asking for their cooperation in identifying cases of H2S suicide. To identify cases that were not voluntarily reported by medical examiners but were reported by the media, we conducted Google searches using the search terms: “hydrogen sulfide suicide,” “H2S suicide,” “detergent suicide,” “chemical suicide,” and “suicide fad.” We obtained all available autopsy reports and abstracted information, including the site of the incident, the presence of a note warning others about the toxic gas and the demographic characteristics of the victims. We contacted medical examiners who potentially had custody of the cases that were identified through media reports and requested autopsies of these victims. When unable to obtain the autopsies, we gathered information from the media reports.Results: Forty-five deaths from H2S exposure occurred in the U.S. from 1999 to 2007, all unintentional. Responses from the NAME listserv yielded autopsy reports for 11 victims, and Google searches revealed an additional 19 H2S suicides in the U.S. since 2008. Overall (n=30), two cases were identified during 2008, 10 in 2009, and 18 in 2010. The majority of victims were white males, less than 30-years-old, left a warning note, and were found in cars. There were five reports of injuries to first responders, but no secondary fatalities.Conclusion: H2S suicides are increasing in the U.S., and their incidence is probably underestimated by public health officials and physicians. First responders are at risk when assessing these victims due to the severe toxicity of the gas. Emergency providers must be aware of H2S suicides to educate others and care for the rare survivor. [West J Emerg Med. 2011;12(3):300-304.

    Combined Gamma Ray/neutron Spectroscopy for Mapping Lunar Resources

    Get PDF
    Some elements in the Moon can be resources, such as hydrogen and oxygen. Other elements, like Ti or the minerals in which they occur, such as ilmenite, could be used in processing lunar materials. Certain elements can also be used as tracers for other elements or lunar processes, such as hydrogen for mature regoliths with other solar-wind-implanted elements like helium, carbon, and nitrogen. A complete knowledge of the elemental composition of a lunar region is desirable both in identifying lunar resources and in lunar geochemical studies, which also helps in identifying and using lunar resources. The use of gamma ray and neutron spectroscopy together to determine abundances of many elements in the top few tens of centimeters of the lunar surface is discussed. To date, very few discussions of elemental mapping of planetary surfaces considered measurements of both gamma rays and the full range of neutron energies. The theories for gamma ray and neutron spectroscopy of the Moon and calculations of leakage fluxes are presented here with emphasis on why combined gamma ray/neutron spectroscopy is much more powerful than measuring either radiation alone

    Thermal development of latent fingermarks on porous surfaces-Further observations and refinements

    Full text link
    In a further study of the thermal development of fingermarks on paper and similar surfaces, it is demonstrated that direct contact heating of the substrate using coated or ceramic surfaces at temperatures in excess of 230 °C produces results superior to those obtained using hot air. Fingermarks can also be developed in this way on other cellulose-based substrates such as wood and cotton fabric, though ridge detail is difficult to obtain in the latter case. Fluorescence spectroscopy indicates that the phenomena observed during the thermal development of fingermarks can be reproduced simply by heating untreated white copy paper or filter paper, or these papers treated with solutions of sodium chloride or alanine. There is no evidence to suggest that the observed fluorescence of fingermarks heated on paper is due to a reaction of fingermark constituents on or with the paper. Instead, we maintain that the ridge contrast observed first as fluorescence, and later as brown charring, is simply an acceleration of the thermal degradation of the paper. Thermal degradation of cellulose, a major constituent of paper and wood, is known to give rise to a fluorescent product if sufficient oxygen is available [1-5]. However, the absence of atmospheric oxygen has only a slight effect on the thermal development of fingermarks, indicating that there is sufficient oxygen already present in paper to allow the formation of the fluorescent and charred products. In a depletion study comparing thermal development of fingermarks on paper with development using ninhydrin, the thermal technique was found to be as sensitive as ninhydrin for six out of seven donors. When thermal development was used in sequence with ninhydrin and DFO, it was found that only fingermarks that had been developed to the fluorescent stage (a few seconds of heating) could subsequently be developed with the other reagents. In the reverse sequence, no useful further development was noted for fingermarks that were treated thermally after having been developed with ninhydrin or DFO. Aged fingermarks, including marks from 1-year-old university examination papers were successfully developed using the thermal technique. © 2010 Elsevier Ireland Ltd

    Gamma Ray and Neutron Spectrometer for the Lunar Resource Mapper

    Get PDF
    One of the early Space Exploration Initiatives will be a lunar orbiter to map the elemental composition of the Moon. This mission will support further lunar exploration and habitation and will provide a valuable dataset for understanding lunar geological processes. The proposed payload will consist of the gamma ray and neutron spectrometers which are discussed, an x ray fluorescence imager, and possibly one or two other instruments

    Gamma ray production in inelastic scattering of neutrons produced by cosmic muons in 56^{56}Fe

    Full text link
    We report on the study of the intensities of several gamma lines emitted after the inelastic scattering of neutrons in 56^{56}Fe. Neutrons were produced by cosmic muons passing the 20t massive iron cube placed at the Earth's surface and used as a passive shield for the HPGe detector. Relative intensities of detected gamma lines are compared with the results collected in the same iron shield by the use of 252^{252}Cf neutrons. Assessment against the published data from neutron scattering experiments at energies up to 14 MeV is also provided

    Radioelements on Vesta: An Update

    Get PDF
    The main-belt asteroid 4 Vesta is the putative parent body of the howardite, eucrite, and diogenite (HED) meteorites. Because these achondrites have similar petrology, geochemistry, chronology, and O-isotope compositions, it is thought that most HEDs originated from a single parent body. The connection to Vesta is supported by a close spectroscopic match between Vesta and the HEDs and a credible mechanism for their delivery to Earth. Studies of the HEDs show that Vesta underwent igneous differentiation, forming a Fe-rich core, ultramafic mantle, and basaltic crust. Here we present the results of peak analyses applied to a gamma ray difference spectrum to determine the absolute abundances of K and Th. Data are compared to meteorite whole-rock compositions and other inner solar system bodies. The results, while preliminary, represent our present best estimates for these elements. Because the element signatures are near detection limits and not fully resolved, further analysis (e.g. using spectral unmixing) will be required for improved accuracy and to characterize systematic errors

    Al-26 production profile and model comparisons in Canyon Diablo

    Get PDF
    The large preatmospheric size of the Canyon Diablo meteorite, a radius of about 15 m, makes it especially suitable for systematic studies of cosmogenic nuclide production rates of iron objects in a 2 pi geometry. To reconstruct the exposure history of the meteoroid, Heymann et al. investigated several fragments recovered from known geographic locations around the crater for their shock features and cosmogenic nobel gases. They applied the Signer-Nier noble gas production rate model to establish the preatmospheric depth of the specimens in the meteoroid. Cosmic ray exposure ages suggested a multi-episodic irradiation, with 170 or 540 Ma being inferred for most of the samples studied while two anomalous specimens indicated a possible third exposure age at 940 Ma. Be-10 and Cl-36 have been measured in a number of these same samples by accelerator mass spectrometry (AMS), with use being made of the preatmospheric depths determined in Heymann et al. to construct production profiles. The present study extends the cosmogenic radionuclide data to Al-26 and compares the results with both the production rate model of Reedy and Arnold and production rates determined from the cross sections used by the Reedy-Arnold model (for the major nuclear reactions making Al-26) in combination with differential fluxes calculated using the Los Alamos High Energy Transport (LAHET) Code System. Model calculations for Be-10 and Cl-36 have also been obtained
    corecore