18,520 research outputs found

    Regularity of Bound States

    Full text link
    We study regularity of bound states pertaining to embedded eigenvalues of a self-adjoint operator HH, with respect to an auxiliary operator AA that is conjugate to HH in the sense of Mourre. We work within the framework of singular Mourre theory which enables us to deal with confined massless Pauli-Fierz models, our primary example, and many-body AC-Stark Hamiltonians. In the simpler context of regular Mourre theory our results boils down to an improvement of results obtained recently in \cite{CGH}.Comment: 70 page

    Asymptotically Universal Crossover in Perturbation Theory with a Field Cutoff

    Full text link
    We discuss the crossover between the small and large field cutoff (denoted x_{max}) limits of the perturbative coefficients for a simple integral and the anharmonic oscillator. We show that in the limit where the order k of the perturbative coefficient a_k(x_{max}) becomes large and for x_{max} in the crossover region, a_k(x_{max}) is proportional to the integral from -infinity to x_{max} of e^{-A(x-x_0(k))^2}dx. The constant A and the function x_0(k) are determined empirically and compared with exact (for the integral) and approximate (for the anharmonic oscillator) calculations. We discuss how this approach could be relevant for the question of interpolation between renormalization group fixed points.Comment: 15 pages, 11 figs., improved and expanded version of hep-th/050304

    Ab initio study of single molecular transistor modulated by gate-bias

    Get PDF
    We use a self-consistent method to study the current of the single molecular transistor modulated by the transverse gate-bias in the level of the first-principles calculations. The numerical results show that both the polyacene-dithiol molecules and the fused-ring oligothiophene molecules are the potential high-frequency molecular transistor controlled by the transverse field. The long molecules of the polyacene-dithiol or the fused-ring thiophene are in favor of realizing the gate-bias controlled molecular transistor. The theoretical results suggest the related experiments.Comment: 14 pages, 7 figure

    Perturbation theory of von Neumann Entropy

    Full text link
    In quantum information theory, von Neumann entropy plays an important role. The entropies can be obtained analytically only for a few states. In continuous variable system, even evaluating entropy numerically is not an easy task since the dimension is infinite. We develop the perturbation theory systematically for calculating von Neumann entropy of non-degenerate systems as well as degenerate systems. The result turns out to be a practical way of the expansion calculation of von Neumann entropy.Comment: 7 page

    The problem of deficiency indices for discrete Schr\"odinger operators on locally finite graphs

    Full text link
    The number of self-adjoint extensions of a symmetric operator acting on a complex Hilbert space is characterized by its deficiency indices. Given a locally finite unoriented simple tree, we prove that the deficiency indices of any discrete Schr\"odinger operator are either null or infinite. We also prove that almost surely, there is a tree such that all discrete Schr\"odinger operators are essentially self-adjoint. Furthermore, we provide several criteria of essential self-adjointness. We also adress some importance to the case of the adjacency matrix and conjecture that, given a locally finite unoriented simple graph, its the deficiency indices are either null or infinite. Besides that, we consider some generalizations of trees and weighted graphs.Comment: Typos corrected. References and ToC added. Paper slightly reorganized. Section 3.2, about the diagonalization has been much improved. The older section about the stability of the deficiency indices in now in appendix. To appear in Journal of Mathematical Physic

    Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies

    Full text link
    We generalize the Kuramoto model for coupled phase oscillators by allowing the frequencies to drift in time according to Ornstein-Uhlenbeck dynamics. Such drifting frequencies were recently measured in cellular populations of circadian oscillator and inspired our work. Linear stability analysis of the Fokker-Planck equation for an infinite population is amenable to exact solution and we show that the incoherent state is unstable passed a critical coupling strength K_c(\ga, \sigf), where \ga is the inverse characteristic drifting time and \sigf the asymptotic frequency dispersion. Expectedly KcK_c agrees with the noisy Kuramoto model in the large \ga (Schmolukowski) limit but increases slower as \ga decreases. Asymptotic expansion of the solution for \ga\to 0 shows that the noiseless Kuramoto model with Gaussian frequency distribution is recovered in that limit. Thus varying a single parameter allows to interpolate smoothly between two regimes: one dominated by the frequency dispersion and the other by phase diffusion.Comment: 5 pages, 5 figures, accepted in Phys. Rev.

    Covariant Affine Integral Quantization(s)

    Full text link
    Covariant affine integral quantization of the half-plane is studied and applied to the motion of a particle on the half-line. We examine the consequences of different quantizer operators built from weight functions on the half-plane. To illustrate the procedure, we examine two particular choices of the weight function, yielding thermal density operators and affine inversion respectively. The former gives rise to a temperature-dependent probability distribution on the half-plane whereas the later yields the usual canonical quantization and a quasi-probability distribution (affine Wigner function) which is real, marginal in both momentum p and position q.Comment: 36 pages, 10 figure

    Resolving the pulsations of subdwarf B stars: HS 0039+4302, HS 0444+0458, and an examination of the group properties of resolved pulsators

    Full text link
    We continue our program of single-site observations of pulsating subdwarf B (sdB) stars and present the results of extensive time series photometry of HS 0039+4302 and HS 0444+0458. Both were observed at MDM Observatory during the fall of 2005. We extend the number of known frequencies for HS 0039+4302 from 4 to 14 and discover one additional frequency for HS 0444+0458, bringing the total to three. We perform standard tests to search for multiplet structure, measure amplitude variations, and examine the frequency density to constrain the mode degree \ell. Including the two stars in this paper, 23 pulsating sdB stars have received follow-up observations designed to decipher their pulsation spectra. It is worth an examination of what has been detected. We compare and contrast the frequency content in terms of richness and range and the amplitudes with regards to variability and diversity. We use this information to examine observational correlations with the proposed κ\kappa pulsation mechanism as well as alternative theories.Comment: 32 pages, 18 figures, 7 tables. Accepted for publication in MNRA

    How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?

    Get PDF
    International audienceThis study provides a comprehensive assessment of state-of-the-art evolutionary multiobjective optimization (EMO) tools' relative effectiveness in calibrating hydrologic models. The relative computational efficiency, accuracy, and ease-of-use of the following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic Algorithm-II (?-NSGAII), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). This study uses three test cases to compare the algorithms' performances: (1) a standardized test function suite from the computer science literature, (2) a benchmark hydrologic calibration test case for the Leaf River near Collins, Mississippi, and (3) a computationally intensive integrated surface-subsurface model application in the Shale Hills watershed in Pennsylvania. One challenge and contribution of this work is the development of a methodology for comprehensively comparing EMO algorithms that have different search operators and randomization techniques. Overall, SPEA2 attained competitive to superior results for most of the problems tested in this study. The primary strengths of the SPEA2 algorithm lie in its search reliability and its diversity preservation operator. The biggest challenge in maximizing the performance of SPEA2 lies in specifying an effective archive size without a priori knowledge of the Pareto set. In practice, this would require significant trial-and-error analysis, which is problematic for more complex, computationally intensive calibration applications. ?-NSGAII appears to be superior to MOSCEM-UA and competitive with SPEA2 for hydrologic model calibration. ?-NSGAII's primary strength lies in its ease-of-use due to its dynamic population sizing and archiving which lead to rapid convergence to very high quality solutions with minimal user input. MOSCEM-UA is best suited for hydrologic model calibration applications that have small parameter sets and small model evaluation times. In general, it would be expected that MOSCEM-UA's performance would be met or exceeded by either SPEA2 or ?-NSGAII
    corecore