23,729 research outputs found

    Constraining supersymmetry from the satellite experiments

    Full text link
    In this paper we study the detectability of γ\gamma-rays from dark matter annihilation in the subhalos of the Milky Way by the satellite-based experiments, EGRET and GLAST. We work in the frame of supersymmetric extension of the standard model and assume the lightest neutralino being the dark matter particles. Based on the N-body simulation of the evolution of dark matter subhalos we first calculate the average intensity distribution of this new class of γ\gamma-ray sources by neutralino annihilation. It is possible to detect these γ\gamma-ray sources by EGRET and GLAST. Conversely, if these sources are not detected the nature of the dark matter particls will be constrained by these experiments, which, however, depending on the uncertainties of the subhalo profile.Comment: 19 pages, 5 gigures; references added, more discussions adde

    Putting Soybeans into Permanent Farming

    Get PDF
    PDF pages: 3

    Transonic wind-tunnel tests of a lifting parachute model

    Get PDF
    Wind-tunnel tests have been made in the Langley transonic dynamics tunnel on a 0.25-scale model of Sandia Laboratories' 3.96-meter (13-foot), slanted ribbon design, lifting parachute. The lifting parachute is the first stage of a proposed two-stage payload delivery system. The lifting parachute model was attached to a forebody representing the payload. The forebody was designed and installed in the test section in a manner which allowed rotational freedom about the pitch and yaw axes. Values of parachute axial force coefficient, rolling moment coefficient, and payload trim angles in pitch and yaw are presented through the transonic speed range. Data are presented for the parachute in both the reefed and full open conditions. Time history records of lifting parachute deployment and disreefing tests are included

    Perturbation Theory of Schr\"odinger Operators in Infinitely Many Coupling Parameters

    Full text link
    In this paper we study the behavior of Hamilton operators and their spectra which depend on infinitely many coupling parameters or, more generally, parameters taking values in some Banach space. One of the physical models which motivate this framework is a quantum particle moving in a more or less disordered medium. One may however also envisage other scenarios where operators are allowed to depend on interaction terms in a manner we are going to discuss below. The central idea is to vary the occurring infinitely many perturbing potentials independently. As a side aspect this then leads naturally to the analysis of a couple of interesting questions of a more or less purely mathematical flavor which belong to the field of infinite dimensional holomorphy or holomorphy in Banach spaces. In this general setting we study in particular the stability of selfadjointness of the operators under discussion and the analyticity of eigenvalues under the condition that the perturbing potentials belong to certain classes.Comment: 25 pages, Late

    Observation of small scale structure using sextupole lensing

    Full text link
    Weak gravitational lensing seeks to determine shear by measuring induced quadrupole (elliptical) shapes in background galaxy images. Small impact parameter (a few kpc) gravitational lensing by foreground core masses between 2 10^{9} and 2 10^{12} M_\odot will additionally induce a sextupole shape with the quadrupole and sextupole minima aligned. This correlation in relative orientation of the quadrupole and sextupole provides a sensitive method to identify images which have been slightly curved by lensing events. A general theoretical framework for sextupole lensing is developed which includes several low order coefficients in a general lensing map. Tools to impute map coefficients from the galaxy images are described and applied to the north Hubble deep field. Instrumental PSFs, camera charge diffusion, and image composition methods are modelled in the coefficient determination process. Estimates of Poisson counting noise for each galaxy are used to cut galaxies with signals too small to reliably establish curvature. Curved galaxies are found to be spatially clumped, as would be expected if the curving were due to small impact parameter lensing by localized ensembles of dark matter haloes. Simulations provide an estimate of the total required lensing mass and the acceptable mass range of the constituent haloes. The overdensities and underdensities of visible galaxies and their locations in the Hubble foreground is found to be consistent with our observations and their interpretation as lensing events.Comment: 40 pages, 44 figure

    Effective Equations of Motion for Quantum Systems

    Full text link
    In many situations, one can approximate the behavior of a quantum system, i.e. a wave function subject to a partial differential equation, by effective classical equations which are ordinary differential equations. A general method and geometrical picture is developed and shown to agree with effective action results, commonly derived through path integration, for perturbations around a harmonic oscillator ground state. The same methods are used to describe dynamical coherent states, which in turn provide means to compute quantum corrections to the symplectic structure of an effective system.Comment: 31 pages; v2: a new example, new reference

    Consistent services throughout the week for acute medical care.

    Get PDF

    The von Neumann-Wigner type potentials and the wave functions' asymptotics for the discrete levels in continuum

    Full text link
    One to one correspondence between the decay law of the von Neumann-Wigner type potentials and the asymptotic behaviour of the wave functions representing bound states in the continuum is established.Comment: latex, 7 page

    The Spontaneous Emergence of Social Influence in Online Systems

    Full text link
    Social influence drives both offline and online human behaviour. It pervades cultural markets, and manifests itself in the adoption of scientific and technical innovations as well as the spread of social practices. Prior empirical work on the diffusion of innovations in spatial regions or social networks has largely focused on the spread of one particular technology among a subset of all potential adopters. It has also been difficult to determine whether the observed collective behaviour is driven by natural influence processes, or whether it follows external signals such as media or marketing campaigns. Here, we choose an online context that allows us to study social influence processes by tracking the popularity of a complete set of applications installed by the user population of a social networking site, thus capturing the behaviour of all individuals who can influence each other in this context. By extending standard fluctuation scaling methods, we analyse the collective behaviour induced by 100 million application installations, and show that two distinct regimes of behaviour emerge in the system. Once applications cross a particular threshold of popularity, social influence processes induce highly correlated adoption behaviour among the users, which propels some of the applications to extraordinary levels of popularity. Below this threshold, the collective effect of social influence appears to vanish almost entirely in a manner that has not been observed in the offline world. Our results demonstrate that even when external signals are absent, social influence can spontaneously assume an on-off nature in a digital environment. It remains to be seen whether a similar outcome could be observed in the offline world if equivalent experimental conditions could be replicated
    corecore