7,923 research outputs found

    Green functions and dimensional reduction of quantum fields on product manifolds

    Full text link
    We discuss Euclidean Green functions on product manifolds P=NxM. We show that if M is compact then the Euclidean field on P can be approximated by its zero mode which is a Euclidean field on N. We estimate the remainder of this approximation. We show that for large distances on N the remainder is small. If P=R^{D-1}xS^{beta}, where S^{beta} is a circle of radius beta, then the result reduces to the well-known approximation of the D dimensional finite temperature quantum field theory to D-1 dimensional one in the high temperature limit. Analytic continuation of Euclidean fields is discussed briefly.Comment: 17 page

    Canonical Expansion of PT-Symmetric Operators and Perturbation Theory

    Full text link
    Let HH be any \PT symmetric Schr\"odinger operator of the type 2Δ+(x12+...+xd2)+igW(x1,...,xd) -\hbar^2\Delta+(x_1^2+...+x_d^2)+igW(x_1,...,x_d) on L2(Rd)L^2(\R^d), where WW is any odd homogeneous polynomial and gRg\in\R. It is proved that H\P H is self-adjoint and that its eigenvalues coincide (up to a sign) with the singular values of HH, i.e. the eigenvalues of HH\sqrt{H^\ast H}. Moreover we explicitly construct the canonical expansion of HH and determine the singular values μj\mu_j of HH through the Borel summability of their divergent perturbation theory. The singular values yield estimates of the location of the eigenvalues \l_j of HH by Weyl's inequalities.Comment: 20 page

    Relativistic quantum theories and neutrino oscillations

    Full text link
    Neutrino oscillations are examined under the broad requirements of Poincar\'e-invariant scattering theory in an S-matrix formulation. This approach can be consistently applied to theories with either field or particle degrees of freedom. The goal of this paper is to use this general framework to identify all of the unique physical properties of this problem that lead to a simple oscillation formula. We discuss what is in principle observable, and how many factors that are important in principle end up being negligible in practice.Comment: 21 pages, no figure

    The Effects of Acute Thermoneutral and Hot Water Immersion on Cerebrovascular Reactivity

    Get PDF
    Click the PDF icon to download the abstract

    Renal and Segmental Artery Hemodynamic Response to Mild Hypercapnia

    Get PDF
    Click the PDF icon to download the abstract

    UV induced ubiquitination of the yeast Rad4-Rad23 complex promotes survival by regulating cellular dNTP pools

    Get PDF
    Regulating gene expression programmes is a central facet of the DNA damage response. The Dun1 kinase protein controls expression of many DNA damage induced genes, including the ribonucleotide reductase genes, which regulate cellular dNTP pools. Using a combination of gene expression profiling and chromatin immunoprecipitation, we demonstrate that in the absence of DNA damage the yeast Rad4�Rad23 nucleotide excision repair complex binds to the promoters of certain DNA damage response genes including DUN1, inhibiting their expression. UV radiation promotes the loss of occupancy of the Rad4�Rad23 complex from the regulatory regions of these genes, enabling their induction and thereby controlling the production of dNTPs. We demonstrate that this regulatory mechanism, which is dependent on the ubiquitination of Rad4 by the GG-NER E3 ligase, promotes UV survival in yeast cells. These results support an unanticipated regulatory mechanism that integrates ubiquitination of NER DNA repair factors with the regulation of the transcriptional response controlling dNTP production and cellular survival after UV damage

    Fibre bundle formulation of nonrelativistic quantum mechanics: I. Introduction. The evolution transport

    Full text link
    We propose a new systematic fibre bundle formulation of nonrelativistic quantum mechanics. The new form of the theory is equivalent to the usual one but it is in harmony with the modern trends in theoretical physics and potentially admits new generalizations in different directions. In it a pure state of some quantum system is described by a state section (along paths) of a (Hilbert) fibre bundle. Its evolution is determined through the bundle (analogue of the) Schr\"odinger equation. Now the dynamical variables and the density operator are described via bundle morphisms (along paths). The mentioned quantities are connected by a number of relations derived in this work. The present first part of this investigation is devoted to the introduction of basic concepts on which the fibre bundle approach to quantum mechanics rests. We show that the evolution of pure quantum-mechanical states can be described as a suitable linear transport along paths, called evolution transport, of the state sections in the Hilbert fibre bundle of states of a considered quantum system.Comment: 26 standard (11pt, A4) LaTeX 2e pages. The packages AMS-LaTeX and amsfonts are required. Revised: new material, references, and comments are added. Minor style chages. Continuation of quan-ph/9803083. For continuation of the this series see http://www.inrne.bas.bg/mathmod/bozhome
    corecore