437 research outputs found

    Semiclassical Propagation of Coherent States for the Hartree equation

    Full text link
    In this paper we consider the nonlinear Hartree equation in presence of a given external potential, for an initial coherent state. Under suitable smoothness assumptions, we approximate the solution in terms of a time dependent coherent state, whose phase and amplitude can be determined by a classical flow. The error can be estimated in L2L^2 by C \sqrt {\var}, \var being the Planck constant. Finally we present a full formal asymptotic expansion

    Fock Representations of Quantum Fields with Generalized Statistic

    Full text link
    We develop a rigorous framework for constructing Fock representations of quantum fields obeying generalized statistics associated with certain solutions of the spectral quantum Yang-Baxter equation. The main features of these representations are investigated. Various aspects of the underlying mathematical structure are illustrated by means of explicit examples.Comment: 26 pages, Te

    Resummation of Nonalternating Divergent Perturbative Expansions

    Get PDF
    A method for the resummation of nonalternating divergent perturbation series is described. The procedure constitutes a generalization of the Borel-Pad\'{e} method. Of crucial importance is a special integration contour in the complex plane. Nonperturbative imaginary contributions can be inferred from the purely real perturbative coefficients. A connection is drawn from the quantum field theoretic problem of resummation to divergent perturbative expansions in other areas of physics.Comment: 5 pages, LaTeX, 2 tables, 1 figure; discussion of the Carleman criterion added; version to appear in Phys. Rev.

    Soil water measurements relevant to agronomic and environmental functions of chemically treated soil

    Get PDF
    Modern agricultural, turf, and landscape management routinely apply and depend upon chemical applications to optimize system function for specific outcomes. The effectiveness of these applied chemicals to achieve desired outcomes usually depends upon their interaction with and transport by water. To fully and accurately assess the role of water as a chemical delivery and activation system requires a good understanding of how the applied chemicals, soil, and water interact, the scale at which a phenomenon is important, the nature of soil variability, and which of the three dominant soil water properties ?content, movement, or potential energy? is most suited to assessing water’s role. The science of this assessment process is extensive and its literature is voluminous. For the uninitiated, however, it is worth being aware at least of the basics of soil water assessment and where some of the pitfalls lie. This presentation describes soil as a three-phase system ?solids, liquid, and gases? and highlights some of the key measurements and measurement considerations necessary to appropriately characterize treatment efficacy for specific, and especially, non-intuitive effects. The presentation cannot be comprehensive or substitute for requisite university-level courses in soil physics and soil chemistry, but can, perhaps, alert applicators to situations and considerations that demand more than mere cursory assessment for proper evaluation and interpretation

    Magnetic Interactions and Transport in (Ga,Cr)As

    Full text link
    The magnetic, transport, and structural properties of (Ga,Cr)As are reported. Zincblende Ga1x_{1-x}Crx_{x}As was grown by low-temperature molecular beam epitaxy (MBE). At low concentrations, x\sim0.1, the materials exhibit unusual magnetic properties associated with the random magnetism of the alloy. At low temperatures the magnetization M(B) increases rapidly with increasing field due to the alignment of ferromagnetic units (polarons or clusters) having large dipole moments of order 10-102^2μB\mu_B. A standard model of superparamagnetism is inadequate for describing both the field and temperature dependence of the magnetization M(B,T). In order to explain M(B) at low temperatures we employ a distributed magnetic moment (DMM) model in which polarons or clusters of ions have a distribution of moments. It is also found that the magnetic susceptibility increases for decreasing temperature but saturates below T=4 K. The inverse susceptibility follows a linear-T Curie-Weiss law and extrapolates to a magnetic transition temperature θ\theta=10 K. In magnetotransport measurements, a room temperature resistivity of ρ\rho=0.1 Ω\Omegacm and a hole concentration of 1020\sim10^{20} cm3^{-3} are found, indicating that Cr can also act as a acceptor similar to Mn. The resistivity increases rapidly for decreasing temperature below room temperature, and becomes strongly insulating at low temperatures. The conductivity follows exp[-(T1_1/T)1/2^{1/2}] over a large range of conductivity, possible evidence of tunneling between polarons or clusters.Comment: To appear in PRB 15 Mar 200

    Electronic structure and magnetism of Mn doped GaN

    Full text link
    Mn doped semiconductors are extremely interesting systems due to their novel magnetic properties suitable for the spintronics applications. It has been shown recently by both theory and experiment that Mn doped GaN systems have a very high Curie temperature compared to that of Mn doped GaAs systems. To understand the electronic and magnetic properties, we have studied Mn doped GaN system in detail by a first principles plane wave method. We show here the effect of varying Mn concentration on the electronic and magnetic properties. For dilute Mn concentration, dd states of Mn form an impurity band completely separated from the valence band states of the host GaN. This is in contrast to the Mn doped GaAs system where Mn dd states in the gap lie very close to the valence band edge and hybridizes strongly with the delocalized valence band states. To study the effects of electron correlation, LSDA+U calculations have been performed. Calculated exchange interaction in (Mn,Ga)N is short ranged in contrary to that in (Mn,Ga)As where the strength of the ferromagnetic coupling between Mn spins is not decreased substantially for large Mn-Mn separation. Also, the exchange interactions are anisotropic in different crystallographic directions due to the presence or absence of connectivity between Mn atoms through As bonds.Comment: 6 figures, submitted to Phys. Rev.

    On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum

    Full text link
    We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E_n~n^\alpha, with 0<\alpha<1. In particular, the gaps between successive eigenvalues decay as n^{\alpha-1}. V(t) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of H obey the estimate |V(t)_{m,n}|0, p>=1 and \gamma=(1-\alpha)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and \epsilon is small enough. More precisely, for any initial condition \Psi\in Dom(H^{1/2}), the diffusion of energy is bounded from above as _\Psi(t)=O(t^\sigma) where \sigma=\alpha/(2\ceil{p-1}\gamma-1/2). As an application we consider the Hamiltonian H(t)=|p|^\alpha+\epsilon*v(\theta,t) on L^2(S^1,d\theta) which was discussed earlier in the literature by Howland

    Random Exchange Quantum Heisenberg Chains

    Full text link
    The one-dimensional quantum Heisenberg model with random ±J\pm J bonds is studied for S=12S=\frac{1}{2} and S=1S=1. The specific heat and the zero-field susceptibility are calculated by using high-temperature series expansions and quantum transfer matrix method. The susceptibility shows a Curie-like temperature dependence at low temperatures as well as at high temperatures. The numerical results for the specific heat suggest that there are anomalously many low-lying excitations. The qualitative nature of these excitations is discussed based on the exact diagonalization of finite size systems.Comment: 13 pages, RevTex, 12 figures available on request ([email protected]

    Transport by molecular motors in the presence of static defects

    Get PDF
    The transport by molecular motors along cytoskeletal filaments is studied theoretically in the presence of static defects. The movements of single motors are described as biased random walks along the filament as well as binding to and unbinding from the filament. Three basic types of defects are distinguished, which differ from normal filament sites only in one of the motors' transition probabilities. Both stepping defects with a reduced probability for forward steps and unbinding defects with an increased probability for motor unbinding strongly reduce the velocities and the run lengths of the motors with increasing defect density. For transport by single motors, binding defects with a reduced probability for motor binding have a relatively small effect on the transport properties. For cargo transport by motors teams, binding defects also change the effective unbinding rate of the cargo particles and are expected to have a stronger effect.Comment: 20 pages, latex, 7 figures, 1 tabl
    corecore