38 research outputs found

    A framework to guide planetary health education

    Get PDF
    People around the world are increasingly facing the pressing challenges of today's interconnected environmental, social, and health crises. The COVID-19 pandemic has been an important wake-up call reminding us that we need a healthy planet to ensure the health of all people. The emerging field of planetary health is a framework for understanding these interconnections and identifying solutions to the complex challenges confronting our civilization. Building on the unique role and responsibility of education institutions in shaping our futures, embedding planetary health education in curricula is an essential step to achieving the transformative change needed. Planetary health education across all levels and disciplines will equip and enable learners to drive transdisciplinary and mutually reinforcing actions to protect and restore planetary health and achieve the Sustainable Development Goals

    In Vitro and In Vivo Germ Line Potential of Stem Cells Derived from Newborn Mouse Skin

    Get PDF
    We previously reported that fetal porcine skin-derived stem cells were capable of differentiation into oocyte-like cells (OLCs). Here we report that newborn mice skin-derived stem cells are also capable of differentiating into early OLCs. Using stem cells from mice that are transgenic for Oct4 germline distal enhancer-GFP, germ cells resulting from their differentiation are expected to be GFP+. After differentiation, some GFP+ OLCs reached 40–45 µM and expressed oocyte markers. Flow cytometric analysis revealed that ∼0.3% of the freshly isolated skin cells were GFP+. The GFP-positive cells increased to ∼7% after differentiation, suggesting that the GFP+ cells could be of in vivo origin, but are more likely induced upon being cultured in vitro. To study the in vivo germ cell potential of skin-derived cells, they were aggregated with newborn ovarian cells, and transplanted under the kidney capsule of ovariectomized mice. GFP+ oocytes were identified within a subpopulation of follicles in the resulting growth. Our finding that early oocytes can be differentiated from mice skin-derived cells in defined medium may offer a new in vitro model to study germ cell formation and oogenesis

    Investigating jet and jet-like artefacts from prehistoric Scotland: the National Museums of Scotland project

    No full text
    The black spacer plate necklaces and bracelets of the Early Bronze Age (Figure 1) are among the most technically accomplished prestige items of this period in Britain and Ireland. There has been much debate over the years as to whether these artefacts and other prehistoric black jewellery and dress accessories are the product of specialist jetworkers based around Whitby in North Yorkshire — Britain’s only significant source of jet. As early as 1916, for example, Callander was arguing that the Scottish finds had been made using locally available materials — cannel coal, shale and lignite — rather than Whitby jet. There has also been much confusion over the identification of these various materials. Flirthermore, the conservation of newly discovered jet and jet-like artefacts can be problematical, and the correct identification of raw material is important in determining the best method of treatment

    Integrin αvβ3 Is a Master Regulator of Resistance to TKI-Induced Ferroptosis in HER2-Positive Breast Cancer

    No full text
    Human epidermal growth factor receptor-2 (HER2)-targeting therapies provide clinical benefits for patients with HER2-positive breast cancer. However, the resistance to monotherapies invariably develops and leads to disease relapse and treatment failure. Previous studies have demonstrated a link between the potency of HER2-targeting tyrosine kinase inhibitors (TKIs) and their ability to induce an iron-dependent form of cell death called ferroptosis. The aim of this study was to understand the mechanisms of resistance to TKI-induced ferroptosis and identify novel approaches to overcome treatment resistance. We used mouse and human HER2-positive models of acquired TKI resistance to demonstrate an intimate link between the resistance to TKIs and to ferroptosis and present the first evidence that the cell adhesion receptor αvβ3 integrin is a critical mediator of resistance to TKI-induced ferroptosis. Our findings indicate that αvβ3 integrin-mediated resistance is associated with the re-wiring of the iron/antioxidant metabolism and persistent activation of AKT signalling. Moreover, using gene manipulation approaches and pharmacological inhibitors, we show that this “αvβ3 integrin addiction” can be targeted to reverse TKI resistance. Collectively, these findings provide critical insights into new therapeutic strategies to improve the treatment of advanced HER2-positive breast cancer patients
    corecore