71 research outputs found

    Downregulation of Glutamine Synthetase, not glutaminolysis, is responsible for glutamine addiction in Notch1-driven acute lymphoblastic leukemia

    Get PDF
    The cellular receptor Notch1 is a central regulator of T-cell development, and as a consequence, Notch1 pathway appears upregulated in > 65% of the cases of T-cell acute lymphoblastic leukemia (T-ALL). However, strategies targeting Notch1 signaling render only modest results in the clinic due to treatment resistance and severe side effects. While many investigations reported the different aspects of tumor cell growth and leukemia progression controlled by Notch1, less is known regarding the modifications of cellular metabolism induced by Notch1 upregulation in T-ALL. Previously, glutaminolysis inhibition has been proposed to synergize with anti-Notch therapies in T-ALL models. In this work, we report that Notch1 upregulation in T-ALL induced a change in the metabolism of the important amino acid glutamine, preventing glutamine synthesis through the downregulation of glutamine synthetase (GS). Downregulation of GS was responsible for glutamine addiction in Notch1-driven T-ALL both in vitro and in vivo. Our results also confirmed an increase in glutaminolysis mediated by Notch1. Increased glutaminolysis resulted in the activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway, a central controller of cell growth. However, glutaminolysis did not play any role in Notch1-induced glutamine addiction. Finally, the combined treatment targeting mTORC1 and limiting glutamine availability had a synergistic effect to induce apoptosis and to prevent Notch1-driven leukemia progression. Our results placed glutamine limitation and mTORC1 inhibition as a potential therapy against Notch1-driven leukemia.This work was supported by funds from the followinginstitutions: Agencia Estatal de Investigacion/Euro-pean Regional Development Fund, European Union(PGC2018-096244-B-I00, SAF2016-75442-R), Ministryof Science, Innovation and Universities of Spain,Spanish National Research Council—CSIC, InstitutNational de la Sante et de la Recherche Medicale—INSERM, Ligue Contre le Cancer—Gironde, Univer-site de Bordeaux, Fondation pour la Recherche Medi-cale, the Conseil Regional d’Aquitaine, SIRIC-BRIO,Fondation ARC and Institut Europeen de Chimie etBiologie. MJN was supported by a bourse d’excellencede la Federation Wallonie-Bruxelles (WBI) and a post-doctoral fellowship from Fondation ARC. We thankVincent Pitard (Flow Cytometry Platform, Universitede Bordeaux, France) for technical assistance in flowcytometry experiments. We thank Diana Cabrera(Metabolomics Platform, CIC bioGUNE, Spain) fortechnical assistance in metabolomics analysi

    Postauthorization safety study of betaine anhydrous

    Full text link
    Patient registries for rare diseases enable systematic data collection and can also be used to facilitate postauthorization safety studies (PASS) for orphan drugs. This study evaluates the PASS for betaine anhydrous (Cystadane), conducted as public private partnership (PPP) between the European network and registry for homocystinurias and methylation defects and the marketing authorization holder (MAH). Data were prospectively collected, 2013–2016, in a noninterventional, international, multicenter, registry study. Putative adverse and severe adverse events were reported to the MAH's pharmacovigilance. In total, 130 individuals with vitamin B6 nonresponsive (N = 54) and partially responsive (N = 7) cystathionine beta-synthase (CBS) deficiency, as well as 5,10-methylenetetrahydrofolate reductase (MTHFR; N = 21) deficiency and cobalamin C (N = 48) disease were included. Median (range) duration of treatment with betaine anhydrous was 6.8 (0–9.8) years. The prescribed betaine dose exceeded the recommended maximum (6 g/day) in 49% of individuals older than 10 years because of continued dose adaptation to weight; however, with disease-specific differences (minimum: 31% in B6 nonresponsive CBS deficiency, maximum: 67% in MTHFR deficiency). Despite dose escalation no new or potential risk was identified. Combined disease-specific treatment decreased mean ± SD total plasma homocysteine concentrations from 203 ± 116 to 81 ± 51 Όmol/L (p < 0.0001), except in MTHFR deficiency. Recommendations for betaine anhydrous dosage were revised for individuals ≄ 10 years. PPPs between MAH and international scientific consortia can be considered a reliable model for implementing a PASS, reutilizing well-established structures and avoiding data duplication and fragmentation

    Treatment of Fabry Disease: Outcome of a Comparative Trial with Agalsidase Alfa or Beta at a Dose of 0.2 mg/kg

    Get PDF
    Two different enzyme preparations, agalsidase alfa (Replagal(TM), Shire) and beta (Fabrazyme(TM), Genzyme), are registered for treatment of Fabry disease. We compared the efficacy of and tolerability towards the two agalsidase preparations administered at identical protein dose in a randomized controlled open label trial.Thirty-four Fabry disease patients were treated with either agalsidase alfa or agalsidase beta at equal dose of 0.2 mg/kg biweekly. Primary endpoint was reduction in left ventricular mass after 12 and 24 months of treatment. Other endpoints included occurrence of treatment failure (defined as progression of cardiac, renal or cerebral disease), glomerular filtration rate, pain, anti-agalsidase antibodies, and globotriaosylceramide levels in plasma and urine. After 12 and 24 months of treatment no reduction in left ventricular mass was seen, which was not different between the two treatment groups. Also, no differences in glomerular filtration rate, pain and decline in globotriaosylceramide levels were found. Antibodies developed only in males (4/8 in the agalsidase alfa group and 6/8 in the agalsidase beta group). Treatment failure within 24 months of therapy was seen in 8/34 patients: 6 male patients (3 in each treatment group) and 2 female patients (both agalsidase alfa). The occurrence of treatment failures did not differ between the two treatment groups; chi(2) = 0.38 p = 0.54.Our study revealed no difference in reduction of left ventricular mass or other disease parameters after 12 and 24 months of treatment with either agalsidase alfa or beta at a dose of 0.2 mg/kg biweekly. Treatment failure occurred frequently in both groups and seems related to age and severe pre-treatment disease.International Standard Randomized Clinical Trial ISRCTN45178534 [http://www.controlled-trials.com/ISRCTN45178534]

    Mutation spectrum of 122 hemophilia A families from Taiwanese population by LD-PCR, DHPLC, multiplex PCR and evaluating the clinical application of HRM

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemophilia A represents the most common and severe inherited hemorrhagic disorder. It is caused by mutations in the F8 gene, which leads to a deficiency or dysfunctional factor VIII protein, an essential cofactor in the factor X activation complex.</p> <p>Methods</p> <p>We used long-distance polymerase chain reaction and denaturing high performance liquid chromatography for mutation scanning of the F8 gene. We designed the competitive multiplex PCR to identify the carrier with exonal deletions. In order to facilitate throughput and minimize the cost of mutation scanning, we also evaluated a new mutation scanning technique, high resolution melting analysis (HRM), as an alternative screening method.</p> <p>Results</p> <p>We presented the results of detailed screening of 122 Taiwanese families with hemophilia A and reported twenty-nine novel mutations. There was one family identified with whole exons deletion, and the carriers were successfully recognized by multiplex PCR. By HRM, the different melting curve patterns were easily identified in 25 out of 28 cases (89%) and 15 out of 15 (100%) carriers. The sensitivity was 93 % (40/43). The overall mutation detection rate of hemophilia A was 100% in this study.</p> <p>Conclusion</p> <p>We proposed a diagnostic strategy for hemophilia A genetic diagnosis. We consider HRM as a powerful screening tool that would provide us with a more cost-effective protocol for hemophilia A mutation identification.</p

    Uneven X inactivation in a female monozygotic twin pair with Fabry disease and discordant expression of a novel mutation in the alpha-galactosidase A gene.

    No full text
    We describe two female monozygotic (MZ) twins heterozygous for Fabry disease, an X linked disorder resulting from the deficient activity of alpha-galactosidase A. While one of the twins was clinically affected, the other was asymptomatic. Enzymatic assay of alpha-galactosidase in blood leucocytes, skin fibroblasts, Epstein-Barr virus transformed lymphoid cell lines, and hair follicles of the twins and their parents confirmed the heterozygous status of the twins and indicated that Fabry disease had occurred as a result of a de novo mutation. The son of the unaffected twin sister was shown to be hemizygous. Molecular analysis of the alpha-galactosidase A gene permitted the identification of an as yet undescribed point mutation at position 10182 of exon 5 which causes an Asp to Asn substitution at codon 231. Single strand conformation polymorphism (SSCP) analysis again showed the heterozygous status of the twins and a normal pattern in their parents. The basis for the discordant expression of this d novo mutation in the twins was investigated by studying their X inactivation status. Analysis of the inactive X specific methylation at the androgen receptor gene showed unbalanced inactivation in the twins' fibroblasts and in opposite directions. While the maternally derived X chromosome was preferentially active in the asymptomatic twin, the paternal X chromosome was active in the other, affected twin and was found in her hemizygotic nephew. These data suggest that the paternal X chromosome carries the de novo alpha-galactosidase A mutation and that uneven X inactivation is the underlying mechanism for disease expression in this novel female MZ twin pair. This is the first documented case of female twins discordant for Fabry disease

    Ann Biol Clin (Paris)

    No full text
    La dĂ©nutrition comme la malnutrition induisent des dĂ©ficits en micronutriments, Ă©lĂ©ments-trace et vitamines nĂ©cessaires aux fonctions physiologiques et au fonctionnement du systĂšme immunitaire. Ces carences et les maladies infectieuses coexistent souvent en complexes interactions. Une Ă©valuation de l’état nutritionnel en micronutriments des patients Covid-19 n’a pas Ă©tĂ© au centre des prioritĂ©s face Ă  l’urgence mĂ©dicale et Ă  l’absence de preuves directes et rapides des effets de supplĂ©mentation. Peu de recommandations ont Ă©manĂ© des sociĂ©tĂ©s savantes par manque de preuves significatives des effets de supplĂ©mentations, avec une nĂ©cessitĂ© d’études robustes. S’il est reconnu que les oligo-Ă©lĂ©ments essentiels et les vitamines sont nĂ©cessaires Ă  la diffĂ©renciation, l’activation et l’exĂ©cution de fonctions des cellules immunitaires, leur rĂŽle spĂ©cifique reste encore Ă  dĂ©finir. Cette synthĂšse aborde dans la Covid-19 l’importance des micronutriments (sĂ©lĂ©nium, cuivre, zinc, vitamines C, D, A et groupe B) chez l’hĂŽte pour tendre vers une optimisation de la rĂ©ponse immunitaire aux infections. En prĂ©vention primaire, en population gĂ©nĂ©rale, un Ă©quilibre nutritionnel reste central pour atteindre l’homĂ©ostasie des micronutriments, pour diminuer le risque des situations de dĂ©sĂ©quilibre et de fragilisation face Ă  des situations sanitaires d’ampleur.Nutritional status is an important protection factor against viral infections. Both undernutrition and malnutrition cause deficits in micronutrients, trace elements and vitamins necessary for various physiological functions and the appropriate functioning of the immune system. These deficiencies and infectious diseases often coexist, with complex interactions. An assessment of the micro-nutrient nutritional status of Covid-19 patients has not been at the center of priorities and recommendations, due to both the medical emergency and the absence of direct evidence and rapid effects of supplementation. Few recommendations have come from learned societies due to the lack of significant evidence of the effects of supplementation in positive patients and a need for robust studies. Essential trace elements and vitamins are necessary for the differentiation, activation and execution of many functions of immune cells, but their specific role has yet to be defined. This review article discusses in the context of Covid-19 the importance of micronutrients (selenium, copper, zinc, vitamins C, D, A and those of group B) in the host to tend towards an optimization of the immune response to infections. A nutritional balance remains the key word for achieving micronutrient homeostasis. Attention had to be paid to micronutrients in primary prevention, in the general population, in order to reduce the risk of impaired nutritional status in case of major health situations
    • 

    corecore