39 research outputs found

    Structurally complex farms support high avian functional diversity in tropical montane Ethiopia

    Get PDF
    Of all feeding guilds, understorey insectivores are thought to be most sensitive to disturbance and forest conversion. We compared the composition of bird feeding guilds in tropical forest fragments with adjacent agro-ecosystems in a montane region of south-west Ethiopia. We used a series of point counts to survey birds in 19 agriculture and 19 forest sites and recorded tree species within each farm across an area of 40 Ă— 35 km. Insectivores (~17 spp. per plot), frugivores (~3 spp. per plot) and omnivores (~5 spp. per plot) maintained species density across habitats, while granivores and nectarivores increased in the agricultural sites by factors of 7 and 3 respectively. Species accumulation curves of each guild were equal or steeper in agriculture, suggesting that agricultural and forest landscapes were equally heterogeneous for all bird guilds. Counter to most published studies, we found no decline in insectivore species richness with forest conversion. However, species composition differed between the two habitats, with certain forest specialists replaced by other species within each feeding guild. We suggest that the lack of difference in insectivorous species numbers between forest and agriculture in this region is due to the benign nature of the agricultural habitat, but also due to a regional species pool which contains many bird species which are adapted to open habitats

    Scientific concepts and methods for moving persistence assessments into the 21st century

    Get PDF
    34 páginas.- 2 figuras.- 3 tablas.- 225 referenciasThe evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;1–34. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).Peer reviewe

    SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species

    Get PDF
    A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources

    Crowdsourcing hypothesis tests: Making transparent how design choices shape research results

    Get PDF
    To what extent are research results influenced by subjective decisions that scientists make as they design studies? Fifteen research teams independently designed studies to answer fiveoriginal research questions related to moral judgments, negotiations, and implicit cognition. Participants from two separate large samples (total N > 15,000) were then randomly assigned to complete one version of each study. Effect sizes varied dramatically across different sets of materials designed to test the same hypothesis: materials from different teams renderedstatistically significant effects in opposite directions for four out of five hypotheses, with the narrowest range in estimates being d = -0.37 to +0.26. Meta-analysis and a Bayesian perspective on the results revealed overall support for two hypotheses, and a lack of support for three hypotheses. Overall, practically none of the variability in effect sizes was attributable to the skill of the research team in designing materials, while considerable variability was attributable to the hypothesis being tested. In a forecasting survey, predictions of other scientists were significantly correlated with study results, both across and within hypotheses. Crowdsourced testing of research hypotheses helps reveal the true consistency of empirical support for a scientific claim.</div

    Listening in on difficult conversations: an observational, multi-center investigation of real-time conversations in medical oncology

    Get PDF
    BACKGROUND: The quality of communication in medical care has been shown to influence health outcomes. Cancer patients, a highly diverse population, communicate with their clinical care team in diverse ways over the course of their care trajectory. Whether that communication happens and how effective it is may relate to a variety of factors including the type of cancer and the patient’s position on the cancer care continuum. Yet, many of the routine needs of cancer patients after initial cancer treatment are often not addressed adequately. Our goal is to identify areas of strength and areas for improvement in cancer communication by investigating real-time cancer consultations in a cross section of patient-clinician interactions at diverse study sites. METHODS/DESIGN: In this paper we describe the rationale and approach for an ongoing observational study involving three institutions that will utilize quantitative and qualitative methods and employ a short-term longitudinal, prospective follow-up component to investigate decision-making, key topics, and clinician-patient-companion communication dynamics in clinical oncology. DISCUSSION: Through a comprehensive, real-time approach, we hope to provide the fundamental groundwork from which to promote improved patient-centered communication in cancer care

    Mixture Effects on Biodegradation Kinetics of Hydrocarbons in Surface Water: Increasing Concentrations Inhibited Degradation whereas Multiple Substrates Did Not

    No full text
    Most biodegradation tests are conducted using single chemicals at high concentrations, although these chemicals are present in the environment as mixtures at low concentrations. A partitioning-based platform was recently developed for biodegradation testing of composed mixtures of hydrophobic chemicals at ng/L to μg/L concentrations. We used this platform to study the concentration and mixture effect on biodegradation kinetics. Biodegradation tests were conducted in 20 mL vials using environmental water samples as inocula. Passive dosing was applied (1) to vary initial test concentrations of individual test compounds and (2) to vary the number of mixture components between 1 and 16. Automated solid-phase microextraction coupled to gas chromatography–mass spectrometry was used to measure substrate depletion relative to abiotic controls. The number of mixture components had no or only a limited effect on the biodegradation half times for three compounds when tested at environmentally relevant concentrations. In contrast, longer lag phases and half lives were observed for single compounds when tested at higher concentrations that approached aqueous solubility. The obtained results support that simultaneous testing of multiple chemicals at low concentrations can accelerate the generation of biodegradation kinetic data, which are more environmentally relevant compared with data from tests conducted with single chemicals at much higher concentrations

    Inter-laboratory comparison of water solubility methods applied to difficult-to-test substances

    No full text
    Water solubility is perhaps the single most important physical–chemical property determining the environmental fate and effects of organic compounds. Its determination is particularly challenging for compounds with extremely low solubility, frequently referred to as “difficult-to-test” substances and having solubility’s generally less than 0.1 mg/L. The existing regulatory water solubility test for these compounds is the column elution method. Its applicability, however, is limited, to non-volatile solid or crystalline hydrophobic organic compounds. There currently exists no test guideline for measuring the water solubility of very hydrophobic liquid, and potentially volatile, difficult-to-test compounds. This paper describes a “slow-stir” water solubility methodology along with results of a ring trial across five laboratories evaluating the method’s performance. The slow-stir method was applied to n-hexylcyclohexane, a volatile, liquid hydrophobic hydrocarbon. In order to benchmark the inter-laboratory variability associated with the proposed slow-stir method, the five laboratories separately determined the solubility of dodecahydrotriphenylene, a hydrophobic solid compound using the existing column elution guideline. Results across the participating laboratories indicated comparable reproducibility with relative standard deviations (RSD) of 20% or less reported for each test compound – solubility method pair. The inter-laboratory RSD was 16% for n-hexylcyclohexane (mean 14 µg/L, n = 5) using the slow-stir method. For dodecahydrotriphenylene, the inter-laboratory RSD was 20% (mean 2.6 µg/L, n = 4) using the existing column elution method. This study outlines approaches that should be followed and the experimental parameters that have been deemed important for an expanded ring trial of the slow-stir water solubility method. [Figure not available: see fulltext.].</p

    The Rate of Crude Oil Biodegradation in the Sea

    No full text
    Various groups have studied the rate of oil biodegradation in the sea over many years, but with no consensus on results. This can be attributed to many factors, but we show here that the principal confounding influence is the concentration of oil used in different experiments. Because of dilution, measured concentrations of dispersed oil in the sea are sub-parts-per-million within a day of dispersal, and at such concentrations the rate of biodegradation of detectable oil hydrocarbons has an apparent half-life of 7–14 days. This can be contrasted with the rate of degradation at the higher concentrations found in oil slicks or when stranded on a shoreline; there the apparent half-life varies from many months to many years

    Modeling the toxicity of dissolved crude oil exposures to characterize the sensitivity of cod (Gadus morhua) larvae and role of individual and unresolved hydrocarbons

    No full text
    Toxicity of weathered oil was investigated using Atlantic cod (Gadus morhua) larvae. A novel exposure system was applied to differentiate effects associated with dissolved and droplet oil with and without dispersant. After a 4-day exposure and subsequent 4-day recovery period, survival and growth were determined. Analytical data characterizing test oil composition included polyaromatic hydrocarbons (PAH) based on GC/MS and unresolved hydrocarbon classes obtained by two-dimensional chromatography coupled with flame ionization detection was used as input to an oil solubility model to calculate toxic units (TUs) of dissolved PAHs and whole oil, respectively. Critical target lipid body burdens derived from modeling characterizing the sensitivity of effect endpoints investigated were consistent across treatments and within the range previously reported for pelagic species. Individually measured PAHs captured only 3–11% of the TUs associated with the whole oil highlighting the limitations of traditional total PAH exposure metrics for expressing oil toxicity data.acceptedVersio
    corecore