39 research outputs found

    Grown and Characterization of ZnO Aligned Nanorod Arrays for Sensor Applications

    No full text
    ZnO nanorods are promising materials for many applications, in particular for UV detectors. In the present paper, the properties of high crystal quality individual ZnO nanorods and nanorod arrays grown by the self-catalytic CVD method have been investigated to assess their possible applicationsfor UV photodetectors. X-ray diffraction, Raman spectroscopy and cathodoluminescence investigations demonstrate the high quality of nanorods. The nanorod resistivity and carrier concentration in dark is estimated. The transient photocurrent response of both as grown and annealed at 550 °C nanorod array under UV illumination pulses is studied. It is shown that annealing increases the sensitivity and decreases the responsivity that is explained by oxygen out-diffusion and the formation of near surface layer enriched with oxygen vacancies. Oxygen vacancy formation due to annealing is confirmed by an increase of green emission band intensity

    Origin of “memory glass” effect in pressure-amorphized rare-earth molybdate single crystals

    No full text
    The memory glass effect (MGE) describes the ability of some materials to recover the initial structure and crystallographic orientation after pressure-induced amorphization (PIA). In spite of numerous studies the nature and underlying mechanisms of this phenomenon are still not clear. Here we report investigations of MGE in β′-Eu2(MoO4)3 single crystal samples subjected to high pressure amorphization. Using the XRD and TEM techniques we carried out detailed analysis of the structural state of high pressure treated single crystal samples as well as structural transformations due to subsequent annealing at atmospheric pressure. The structure of the sample has been found to be complex, mainly amorphous, however, the amorphous medium contains evenly distributed nanosize inclusions of a paracrystalline phase. The inclusions are highly correlated in orientation and act as “memory units” in the MGE

    Serial Changes in Blood-Cell-Count-Derived and CRP-Derived Inflammatory Indices of COVID-19 Patients

    No full text
    The aim of the study was to investigate the serial changes in inflammatory indices derived from blood cell counts and C-reactive protein (CRP) levels in COVID-19 patients with good and poor outcomes. We retrospectively analyzed the serial changes in the inflammatory indices in 169 COVID-19 patients. Comparative analyses were performed on the first and last days of a hospital stay or death and serially from day 1 to day 30 from the symptom onset. On admission, non-survivors had higher CRP to lymphocytes ratio (CLR) and multi-inflammatory index (MII) values than survivors, while at the time of discharge/death, the largest differences were found for the neutrophil to lymphocyte ratio (NLR), systemic inflammation response index (SIRI), and MII. A significant decrease in NLR, CLR, and MII by the time of discharge was documented in the survivors, and a significant increase in NLR was documented in the non-survivors. The NLR was the only one that remained significant from days 7–30 of disease in intergroup comparisons. The correlation between the indices and the outcome was observed starting from days 13–15. The changes in the index values over time proved to be more helpful in predicting COVID-19 outcomes than those measured on admission. The values of the inflammatory indices could reliably predict the outcome no earlier than days 13–15 of the disease
    corecore