157 research outputs found
Marsh macrophyte responses to inundation anticipate impacts of sea-level rise and indicate ongoing drowning of North Carolina marshes
In situ persistence of coastal marsh habitat as sea level rises depends on whether macrophytes induce compensatory accretion of the marsh surface. Experimental planters in two North Carolina marshes served to expose two dominant macrophyte species to six different elevations spanning 0.75 m (inundation durations 0.4–99 %). Spartina alterniflora and Juncus roemerianus exhibited similar responses—with production in planters suggesting initial increases and then demonstrating subsequent steep declines with increasing inundation, conforming to a segment of the ecophysiological parabola. Projecting inundation levels experienced by macrophytes in the planters onto adjacent marsh platforms revealed that neither species occupied elevations associated with increasing production. Declining macrophyte production with rising seas reduces both bioaccumulation of roots below-ground and baffle-induced sedimentation above-ground. By occupying only descending portions of the parabola, macrophytes in central North Carolina marshes are responding to rising water levels by progressive declines in production, ultimately leading to marsh drowning
Immunogenicity Is Not Improved by Increased Antigen Dose or Booster Dosing of Seasonal Influenza Vaccine in a Randomized Trial of HIV Infected Adults
The risk of poor vaccine immunogenicity and more severe influenza disease in HIV necessitate strategies to improve vaccine efficacy.A randomized, multi-centered, controlled, vaccine trial with three parallel groups was conducted at 12 CIHR Canadian HIV Trials Network sites. Three dosing strategies were used in HIV infected adults (18 to 60 years): two standard doses over 28 days, two double doses over 28 days and a single standard dose of influenza vaccine, administered prior to the 2008 influenza season. A trivalent killed split non-adjuvanted influenza vaccine (Fluviral™) was used. Serum hemagglutinin inhibition (HAI) activity for the three influenza strains in the vaccine was measured to assess immunogenicity.297 of 298 participants received at least one injection. Baseline CD4 (median 470 cells/µL) and HIV RNA (76% of patients with viral load <50 copies/mL) were similar between groups. 89% were on HAART. The overall immunogenicity of influenza vaccine across time points and the three influenza strains assessed was poor (Range HAI ≥ 40 = 31-58%). Double dose plus double dose booster slightly increased the proportion achieving HAI titre doubling from baseline for A/Brisbane and B/Florida at weeks 4, 8 and 20 compared to standard vaccine dose. Increased immunogenicity with increased antigen dose and booster dosing was most apparent in participants with unsuppressed HIV RNA at baseline. None of 8 serious adverse events were thought to be immunization-related.Even with increased antigen dose and booster dosing, non-adjuvanted influenza vaccine immunogenicity is poor in HIV infected individuals. Alternative influenza vaccines are required in this hyporesponsive population.ClinicalTrials.gov NCT00764998
Neisseria meningitidis Differentially Controls Host Cell Motility through PilC1 and PilC2 Components of Type IV Pili
Neisseria meningitidis is a strictly human pathogen that has two facets since asymptomatic carriage can unpredictably turn into fulminant forms of infection. Meningococcal pathogenesis relies on the ability of the bacteria to break host epithelial or endothelial cellular barriers. Highly restrictive, yet poorly understood, mechanisms allow meningococcal adhesion to cells of only human origin. Adhesion of encapsulated and virulent meningococci to human cells relies on the expression of bacterial type four pili (T4P) that trigger intense host cell signalling. Among the components of the meningococcal T4P, the concomitantly expressed PilC1 and PilC2 proteins regulate pili exposure at the bacterial surface, and until now, PilC1 was believed to be specifically responsible for T4P-mediated meningococcal adhesion to human cells. Contrary to previous reports, we show that, like PilC1, the meningococcal PilC2 component is capable of mediating adhesion to human ME180 epithelial cells, with cortical plaque formation and F-actin condensation. However, PilC1 and PilC2 promote different effects on infected cells. Cellular tracking analysis revealed that PilC1-expressing meningococci caused a severe reduction in the motility of infected cells, which was not the case when cells were infected with PilC2-expressing strains. The amount of both total and phosphorylated forms of EGFR was dramatically reduced in cells upon PilC1-mediated infection. In contrast, PilC2-mediated infection did not notably affect the EGFR pathway, and these specificities were shared among unrelated meningococcal strains. These results suggest that meningococci have evolved a highly discriminative tool for differential adhesion in specific microenvironments where different cell types are present. Moreover, the fine-tuning of cellular control through the combined action of two concomitantly expressed, but distinctly regulated, T4P-associated variants of the same molecule (i.e. PilC1 and PilC2) brings a new model to light for the analysis of the interplay between pathogenic bacteria and human host cells
Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses
Many diatoms that inhabit low-nutrient waters of the open ocean live in close association with cyanobacteria. Some of these associations are believed to be mutualistic, where N2-fixing cyanobacterial symbionts provide N for the diatoms. Rates of N2 fixation by symbiotic cyanobacteria and the N transfer to their diatom partners were measured using a high-resolution nanometer scale secondary ion mass spectrometry approach in natural populations. Cell-specific rates of N2 fixation (1.15–71.5 fmol N per cell h−1) were similar amongst the symbioses and rapid transfer (within 30 min) of fixed N was also measured. Similar growth rates for the diatoms and their symbionts were determined and the symbiotic growth rates were higher than those estimated for free-living cells. The N2 fixation rates estimated for Richelia and Calothrix symbionts were 171–420 times higher when the cells were symbiotic compared with the rates estimated for the cells living freely. When combined, the latter two results suggest that the diatom partners influence the growth and metabolism of their cyanobacterial symbionts. We estimated that Richelia fix 81–744% more N than needed for their own growth and up to 97.3% of the fixed N is transferred to the diatom partners. This study provides new information on the mechanisms controlling N input into the open ocean by symbiotic microorganisms, which are widespread and important for oceanic primary production. Further, this is the first demonstration of N transfer from an N2 fixer to a unicellular partner. These symbioses are important models for molecular regulation and nutrient exchange in symbiotic systems
The Regulatory Network of Natural Competence and Transformation of Vibrio cholerae
The human pathogen Vibrio cholerae is an aquatic bacterium frequently encountered in rivers, lakes, estuaries, and coastal regions. Within these environmental reservoirs, the bacterium is often found associated with zooplankton and more specifically with their chitinous exoskeleton. Upon growth on such chitinous surfaces, V. cholerae initiates a developmental program termed “natural competence for genetic transformation.” Natural competence for transformation is a mode of horizontal gene transfer in bacteria and contributes to the maintenance and evolution of bacterial genomes. In this study, we investigated competence gene expression within this organism at the single cell level. We provide evidence that under homogeneous inducing conditions the majority of the cells express competence genes. A more heterogeneous expression pattern was observable on chitin surfaces. We hypothesize that this was the case due to the heterogeneity around the chitin surface, which might vary extensively with respect to chitin degradation products and autoinducers; these molecules contribute to competence induction based on carbon catabolite repression and quorum-sensing pathways, respectively. Therefore, we investigated the contribution of these two signaling pathways to natural competence in detail using natural transformation assays, transcriptional reporter fusions, quantitative RT–PCR, and immunological detection of protein levels using Western blot analysis. The results illustrate that all tested competence genes are dependent on the transformation regulator TfoX. Furthermore, intracellular cAMP levels play a major role in natural transformation. Finally, we demonstrate that only a minority of genes involved in natural transformation are regulated in a quorum-sensing-dependent manner and that these genes determine the fate of the surrounding DNA. We conclude with a model of the regulatory circuit of chitin-induced natural competence in V. cholerae
Diastolic dysfunction in diabetes and the metabolic syndrome: promising potential for diagnosis and prognosis
Cardiac disease in diabetes mellitus and in the metabolic syndrome consists of both vascular and myocardial abnormalities. The latter are characterised predominantly by diastolic dysfunction, which has been difficult to evaluate in spite of its prevalence. While traditional Doppler echocardiographic parameters enable only semiquantitative assessment of diastolic function and cannot reliably distinguish perturbations in loading conditions from altered diastolic functions, new technologies enable detailed quantification of global and regional diastolic function. The most readily available technique for the quantification of subclinical diastolic dysfunction is tissue Doppler imaging, which has been integrated into routine contemporary clinical practice, whereas cine magnetic resonance imaging (CMR) remains a promising complementary research tool for investigating the molecular mechanisms of the disease. Diastolic function is reported to vary linearly with age in normal persons, decreasing by 0.16 cm/s each year. Diastolic function in diabetes and the metabolic syndrome is determined by cardiovascular risk factors that alter myocardial stiffness and myocardial energy availability/bioenergetics. The latter is corroborated by the improvement in diastolic function with improvement in metabolic control of diabetes by specific medical therapy or lifestyle modification. Accordingly, diastolic dysfunction reflects the structural and metabolic milieu in the myocardium, and may allow targeted therapeutic interventions to modulate cardiac metabolism to prevent heart failure in insulin resistance and diabetes
No se fían
It is a standard practice to test for the signature of homologous recombination in studies examining the genetic diversity of bacterial populations. Although it has emerged that homologous recombination rates can vary widely between species, comparing the results from different studies is made difficult by the diversity of estimation methods used. Here, Multi Locus Sequence Typing (MLST) datasets from a wide variety of bacteria and archaea are analyzed using the ClonalFrame method. This enables a direct comparison between species and allows for a first exploration of the question whether phylogeny or ecology is the primary determinant of homologous recombination rate
Population and Environmental Correlates of Maize Yields in Mesoamerica: a Test of Boserup’s Hypothesis in the Milpa
Using a sample of 40 sources reporting milpa and mucuna-intercropped maize yields in Mesoamerica, we test Boserup’s (1965) prediction that fallow is reduced as a result of growing population density. We further examine direct and indirect effects of population density on yield. We find only mixed support for Boserupian intensification. Fallow periods decrease slightly with increasing population density in this sample, but the relationship is weak. Controlling for other covariates, fallow-unadjusted maize yields first rise then fall with population density. Fallow-adjusted maize yields peak at 390 kg/ha/yr for low population densities (8 persons / km2) and decline to around 280 kg/ha/yr for the highest population densities observed in our dataset. Fallow practices do not appear to mediate the relationship between population density and yield. The multi-level modeling methods we adopt allow for data clustering, accurate estimates of group-level variation, and they generate conditional predictions, all features essential to the comparative study of prehistoric and contemporary agricultural yields
- …