9 research outputs found

    Acetonic Extract of Buxus sempervirens Induces Cell Cycle Arrest, Apoptosis and Autophagy in Breast Cancer Cells

    Get PDF
    Plants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used. The acetonic extract of Buxus sempervirens showed cytotoxic activity towards all the five studied breast cancer cell lines with an IC50 ranging from 7.74 µg/ml to 12.5 µg/ml. Most importantly, the plant extract was less toxic towards MCF10A with an IC50 of 19.24 µg/ml. Fluorescence-activated cell sorting (FACS) analysis showed that the plant extract induced cell death and cell cycle arrest in G0/G1 phase in MCF7, T47D, MCF10CA1a and BT-20 cell lines, concomitant to cyclin D1 downregulation. Application of MCF7 and MCF10CA1a respective IC50 did not show such effects on the control cell line MCF10A. Propidium iodide/Annexin V double staining revealed a pre-apoptotic cell population with extract-treated MCF10CA1a, T47D and BT-20 cells. Transmission electron microscopy analyses indicated the occurrence of autophagy in MCF7 and MCF10CA1a cell lines. Immunofluorescence and Western blot assays confirmed the processing of microtubule-associated protein LC3 in the treated cancer cells. Moreover, we have demonstrated the upregulation of Beclin-1 in these cell lines and downregulation of Survivin and p21. Also, Caspase-3 detection in treated BT-20 and T47D confirmed the occurrence of apoptosis in these cells. Our findings indicate that Buxus sempervirens extract exhibit promising anti-cancer activity by triggering both autophagic cell death and apoptosis, suggesting that this plant may contain potential anti-cancer agents for single or combinatory cancer therapy against breast cancer

    Part 13: Synthesis and biological evaluation of piperazine derivatives with dual anti-PAF and anti-HIV-1 or pure antiretroviral activity

    Full text link
    HIV-1 infection of the brain and PAF neurotoxicity are implicated in AIDS dementia complex. We previously reported that a trisubstituted piperazine derivative is able to diminish both HIV-1 replication in monocyte-derived macrophages and PAF-induced platelet aggregation. We report in this work new compounds obtained by modifying its piperazine substituents. The structure-activity relationship study shows that a better dual activity or even pure antiretroviral compounds can be obtained in this series. (c) 2006 Elsevier Ltd. All rights reserved

    Diazonium Salt-Derived 4-(Dimethylamino)phenyl Groups as Hydrogen Donors in Surface-Confined Radical Photopolymerization for Bioactive Poly(2-hydroxyethyl methacrylate) Grafts

    No full text
    In this paper we describe a novel methodology for grafting polymers via radical photopolymerization initiated on gold surfaces by aryl layers from diazonium salt precursors. The parent 4-(dimethylamino)­benzenediazonium salt was electroreduced on a gold surface to provide 4-(dimethylamino)­phenyl (DMA) hydrogen donor layers; free benzophenone in solution was used as a photosensitizer to strip hydrogen from the grafted DMA. This system permitted efficient surface initiation of photopolymerization of 2-hydroxyethyl methacrylate. The resulting poly­(2-hydroxyethyl methacrylate) (PHEMA) grafts were found to be very adherent to the surface as they resist total failure after being soaked in the well-known paint stripper methyl ethyl ketone. The PHEMA grafts were reacted with 1,1′-carbonyldiimidazole to yield carbamate groups that are able to react readily with amino groups from proteins. The final surface consisted of protein-functionalized PHEMA grafts where bovine serum albumin (BSA) protein is specifically linked to the grafts by covalent bonds. We used X-ray photoelectron spectroscopy to monitor the chemical changes at the gold surface all along the process from the neat gold to the end-protein-functionalized polymer grafts: the PHEMA graft thickness ranged from 7 to 27 nm, and the activation by 1,1′-carbonyldiimidazole reached 37% of the OH groups, which was sufficient for 90% surface coverage of the grafts by BSA. This work conclusively provides a new approach for bridging reactive and functional polymers to surfaces via aryl diazonium salts in a simple, fast, and efficient approach of importance in biomedical and other applications
    corecore