455 research outputs found

    Analysis of Gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site.</p> <p>Results</p> <p>We examined the expression of soybean (<it>Glycine max</it>) genes in galls formed in roots by the root-knot nematode, <it>Meloidogyne incognita</it>, 12 days and 10 weeks after infection to understand the effects of infection of roots by <it>M. incognita</it>. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 <it>G. max </it>probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered.</p> <p>Conclusions</p> <p>A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between <it>M. incognita </it>and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.</p

    Laboratory Information Management Software for genotyping workflows: applications in high throughput crop genotyping

    Get PDF
    BACKGROUND: With the advances in DNA sequencer-based technologies, it has become possible to automate several steps of the genotyping process leading to increased throughput. To efficiently handle the large amounts of genotypic data generated and help with quality control, there is a strong need for a software system that can help with the tracking of samples and capture and management of data at different steps of the process. Such systems, while serving to manage the workflow precisely, also encourage good laboratory practice by standardizing protocols, recording and annotating data from every step of the workflow. RESULTS: A laboratory information management system (LIMS) has been designed and implemented at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) that meets the requirements of a moderately high throughput molecular genotyping facility. The application is designed as modules and is simple to learn and use. The application leads the user through each step of the process from starting an experiment to the storing of output data from the genotype detection step with auto-binning of alleles; thus ensuring that every DNA sample is handled in an identical manner and all the necessary data are captured. The application keeps track of DNA samples and generated data. Data entry into the system is through the use of forms for file uploads. The LIMS provides functions to trace back to the electrophoresis gel files or sample source for any genotypic data and for repeating experiments. The LIMS is being presently used for the capture of high throughput SSR (simple-sequence repeat) genotyping data from the legume (chickpea, groundnut and pigeonpea) and cereal (sorghum and millets) crops of importance in the semi-arid tropics. CONCLUSION: A laboratory information management system is available that has been found useful in the management of microsatellite genotype data in a moderately high throughput genotyping laboratory. The application with source code is freely available for academic users and can be downloaded from

    Microstructural evolution and trace element mobility in Witwatersrand pyrite

    Get PDF
    Microstructural analysis of pyrite from a single sample of Witwatersrand conglomerate indicates a complex deformation history involving components of both plastic and brittle deformation. Internal deformation associated with dislocation creep is heterogeneously developed within grains, shows no systematic relationship to bulk rock strain or the location of grain boundaries and is interpreted to represent an episode of pyrite deformation that predates the incorporation of detrital pyrite grains into the Central Rand conglomerates. In contrast, brittle deformation, manifest by grain fragmentation that transects dislocation-related microstructures, is spatially related to grain contacts and is interpreted to represent post-depositional deformation of the Central Rand conglomerates. Analysis of the low-angle boundaries associated with the early dislocation creep phase of deformation indicates the operation of {100} slip systems. However, some orientation boundaries have geometrical characteristics that are not consistent with simple {100} deformation.These boundaries may represent the combination of multiple slip systems or the operation of the previously unrecognized {120} slip system. These boundaries are associated with order of magnitude enrichments in As, Ni and Co that indicate a deformation control on the remobilization of trace elements within pyrite and a potential slip system control on the effectiveness of fast-diffusion pathways. The results confirm the importance of grain-scale elemental remobilization within pyrite prior to their incorporation into the Witwatersrand gold-bearing conglomerates. Since the relationship between gold and pyrite is intimately related to the trace element geochemistry of pyrite, the results have implications for the application of minor element geochemistry to ore deposit formation, suggest a reason for heterogeneous conductivity and localized gold precipitation in natural pyrite and provide a framework for improving mineral processing

    Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses

    Get PDF
    available in PMC 2011 September 1Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.Ragon Institute of MGH, MIT and HarvardBill & Melinda Gates FoundationUnited States. Dept. of Defense (contract W911NF-07-D-0004)National Institutes of Health (U.S.) (P41RR002250)National Institutes of Health (U.S.) (RC2GM092599

    H2FPEF score predicts atherosclerosis presence in patients with systemic connective tissue disease

    Get PDF
    Background: Cardiovascular diseases are common cause of morbidity and mortality in patients with systemic connective tissue diseases (SCTD) due to accelerated atherosclerosis which couldn't be explained by traditional risk factors (CVDRF). Hypothesis: We hypothesized that recently developed score predicting probability of heart failure with preserved ejection fraction (H2FPEF), as well as a measure of right ventricular-pulmonary vasculature coupling [tricuspid annular plane systolic excursion (TAPSE)/pulmonary artery systolic pressure (PASP) ratio], are predictive of atherosclerosis in SCTD. Methods: 203 patients (178 females) diagnosed with SCTD underwent standard and stress-echocardiography (SE) with TAPSE/PASP and left ventricular (LV) diastolic filling pressure (E/e') measurements, carotid ultrasound and computed tomographic coronary angiography. Patients who were SE positive for ischemia underwent coronary angiography (34/203). The H2FPEF score was calculated according to age, body mass index, presence of atrial fibrillation, ≥2 antihypertensives, E/e' and PASP. Results: Mean LV ejection fraction was 66.3 ± 7.1%. Atherosclerosis was present in 150/203 patients according to: 1) intima-media thickness>0.9 mm; and 2) Agatstone score > 300 or Syntax score ≥ 1. On binary logistic regression analysis, including CVDRF prevalence, echocardiographic parameters and H2FPEF score, only H2FPEF score remained significant for the prediction of atherosclerosis presence (χ2 = 19.3, HR 2.6, CI 1.5-4.3, p < 0.001), and resting TAPSE/PASP for the prediction of a SE positive for ischemia (χ2 = 10.4, HR 0.01, CI = 0.01-0.22, p = 0.004). On ROC analysis, the optimal threshold value for identifying patients with atherosclerosis was a H2FPEF score ≥2 (Sn 60.4%, Sp 69.4%, area 0.67, SE = 0.05, p < 0.001). Conclusions: H2FPEF score and resting TAPSE/PASP demonstrated clinical value for an atherosclerosis diagnosis in patients diagnosed with SCTD

    Microanatomic Distribution of Myeloid Heme Oxygenase-1 Protects against Free Radical-Mediated Immunopathology in Human Tuberculosis

    Get PDF
    Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that controls inflammatory responses and redox homeostasis; however, its role during pulmonary tuberculosis (TB) remains unclear. Using freshly resected human TB lung tissue, we examined the role of HO-1 within the cellular and pathological spectrum of TB. Flow cytometry and histopathological analysis of human TB lung tissues showed that HO-1 is expressed primarily in myeloid cells and that HO-1 levels in these cells were directly proportional to cytoprotection. HO-1 mitigates TB pathophysiology by diminishing myeloid cell-mediated oxidative damage caused by reactive oxygen and/or nitrogen intermediates, which control granulocytic karyorrhexis to generate a zonal HO-1 response. Using whole-body or myeloid-specific HO-1-deficient mice, we demonstrate that HO-1 is required to control myeloid cell infiltration and inflammation to protect against TB progression. Overall, this study reveals that zonation of HO-1 in myeloid cells modulates free-radical-mediated stress, which regulates human TB immunopathology

    The smallest of the small: short-term outcomes of profoundly growth restricted and profoundly low birth weight preterm infants

    Full text link
    ObjectiveSurvival of preterm and very low birth weight (VLBW) infants has steadily improved. However, the rates of mortality and morbidity among the very smallest infants are poorly characterized.Study designData from the California Perinatal Quality Care Collaborative for the years 2005 to 2012 were used to compare the mortality and morbidity of profoundly low birth weight (ProLBW, birth weight 300 to 500 g) and profoundly small for gestational age (ProSGA, &lt;1st centile for weight-for-age) infants with very low birth weight (VLBW, birth weight 500 to 1500 g) and appropriate for gestational age (AGA, 5th to 95th centile for weight-for-age) infants, respectively.ResultData were available for 44 561 neonates of birth weight &lt;1500 g. Of these, 1824 were ProLBW and 648 were ProSGA. ProLBW and ProSGA differed in their antenatal risk factors from the comparison groups and were less likely to receive antenatal steroids or to be delivered by cesarean section. Only 14% of ProSGA and 21% of ProLBW infants survived to hospital discharge, compared with &gt;80% of AGA and VLBW infants. The largest increase in mortality in ProSGA and ProLBW infants occurred prior to 12 h of age, and most mortality happened in this time period. Survival of the ProLBW and ProSGA infants was positively associated with higher gestational age, receipt of antenatal steroids, cesarean section delivery and singleton birth.ConclusionSurvival of ProLBW and ProSGA infants is uncommon, and survival without substantial morbidity is rare. Survival is positively associated with receipt of antenatal steroids and cesarean delivery
    • …
    corecore