14,132 research outputs found
X-ray properties of UV-selected star forming galaxies at z~1 in the Hubble Deep Field North
We present an analysis of the X-ray emission from a large sample of
ultraviolet (UV) selected, star forming galaxies with 0.74<z<1.32 in the Hubble
Deep Field North (HDF-N) region. By excluding all sources with significant
detected X-ray emission in the 2 Ms Chandra observation we are able to examine
the properties of galaxies for which the emission in both UV and X-ray is
expected to be predominantly due to star formation. Stacking the X-ray flux
from 216 galaxies in the soft and hard bands produces significant detections.
The derived mean 2-10 keV rest-frame luminosity is 2.97+/-0.26x10^(40) erg/s,
corresponding to an X-ray derived star formation rate (SFR) of 6.0+/-0.6
Msolar/yr. Comparing the X-ray value with the mean UV derived SFR, uncorrected
for attenuation, we find that the average UV attenuation correction factor is
\~3. By binning the galaxy sample according to UV magnitude and colour,
correlations between UV and X-ray emission are also examined. We find a strong
positive correlation between X-ray emission and rest-frame UV emission. A
correlation between the ratio of X-ray-to-UV emission and UV colour is also
seen, such that L(X)/L(UV) increases for redder galaxies. Given that X-ray
emission offers a view of star formation regions that is relatively unaffected
by extinction, results such as these can be used to evaluate the effects of
dust on the UV emission from high-z galaxies. For instance we derive a
relationship for estimating UV attenuation corrections as a function of colour
excess. The observed relation is inconsistent with the Calzetti et al. (2000)
reddening law which over predicts the range in UV attenuation corrections by a
factor of ~100 for the UV selected z~1 galaxies in this sample (abridged).Comment: 10 pages, 7 figures, accepted for publication in MNRA
Many-Body Corrections to Charged-Current Neutrino Absorption Rates in Nuclear Matter
Including nucleon--nucleon correlations due to both Fermi statistics and
nuclear forces, we have developed a general formalism for calculating the
charged--current neutrino--nucleon absorption rates in nuclear matter. We find
that at one half nuclear density many--body effects alone suppress the rates by
a factor of two and that the suppression factors increase to 5 at
g cm. The associated increase in the neutrino--matter
mean--free--paths parallels that found for neutral--current interactions and
opens up interesting possibilities in the context of the delayed supernova
mechanism and protoneutron star cooling.Comment: 11 pages, APS REVTeX format, 1 PostScript figure, uuencoded
compressed, and tarred, submitted to Physical Review Letter
Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies
Next-generation sequencing (NGS) technologies – Illumina RNA-seq, Pacific Biosciences isoform sequencing (PacBio Iso-seq), and Oxford Nanopore direct RNA sequencing (DRS) - have revealed the complexity of plant transcriptomes and their regulation at the co-/posttranscriptional level. Global analysis of mature mRNAs, transcripts from nuclear run-on assays, and nascent chromatin-bound mRNAs using short as well as full-length and single-molecule DRS reads have uncovered potential roles of different forms of RNA polymerase II during the transcription process, and the extent of co-transcriptional pre-mRNA splicing and polyadenylation. These tools have also allowed mapping of transcriptome-wide start sites in cap-containing RNAs, poly(A) site choice, poly(A) tail length, and RNA base modifications.
Analysis of a large number of plant transcriptomes using high-throughput short and long reads under different conditions has established that diverse abiotic and biotic stresses and environmental cues such as light, which regulates many aspects of plant growth and development, have a profound impact on gene expression at the co-/post-transcriptional level.
The emerging theme from these studies is that reprogramming of gene expression in response to developmental cues and stresses at the co-/post transcriptional level likely plays a crucial role in eliciting appropriate responses for optimal growth and plant survival under adverse conditions.
Although the mechanisms by which developmental cues and different stresses regulate co-/posttranscriptional splicing are largely unknown, a few recent studies are beginning to provide some insights into these mechanisms. These studies indicate that the external cues target spliceosomal and splicing regulatory proteins to modulate alternative splicing. In this review, we provide an overview of recent discoveries on the dynamics and complexities of plant transcriptomes, mechanistic insights into splicing regulation, and discuss critical gaps in co-/post-transcriptional research that need to be addressed using diverse genomic and biochemical approaches
The Keck Lyman Continuum Spectroscopic Survey (KLCS): The Emergent Ionizing Spectrum of Galaxies at
We present results of a deep spectroscopic survey designed to quantify the
statistics of the escape of ionizing photons from star-forming galaxies at z~3.
We measure the ratio of ionizing to non-ionizing UV flux density
_obs, where f900 is the mean flux density evaluated over the range
[880,910] A. We quantify the emergent ratio of ionizing to non-ionizing UV flux
density by analyzing high-S/N composite spectra formed from sub-samples with
common observed properties and numbers sufficient to reduce the statistical
uncertainty in the modeled IGM+CGM correction to obtain precise values of
_out, including a full-sample average
_out=. We further show that _out
increases monotonically with Ly rest equivalent width, inducing an
inverse correlation with UV luminosity as a by-product. We fit the composite
spectra using stellar spectral synthesis together with models of the ISM in
which a fraction f_c of the stellar continuum is covered by gas with column
density N(HI). We show that the composite spectra simultaneously constrain the
intrinsic properties of the stars (L900/L1500)_int along with f_c, N(HI),
E(B-V), and , the absolute escape fraction of ionizing photons. We
find a sample-averaged , and that subsamples fall
along a linear relation . We use the FUV luminosity function, the distribution function
, and the relationship between and
_out to estimate the total ionizing emissivity of
star-forming galaxies with Muv < -19.5:
ergs/s/Hz/Mpc, exceeding the contribution of QSOs by a factor of ,
and accounting for % of the total at
estimated using indirect methods.Comment: 45 pages, 31 figures, ApJ, in pres
Cloud Based Student Repository System
Learning through research brings better outcome. In this project, our main motive is to provide a flexible web developed OPAC (Online Public Access Catalogue) for users to gain allusion of projects which is already being exist in the Catalogue. For a developer learning with references helps to design desired outcome for that we are providing a complete erudition of the enduring project by the organization through OPAC. The users are able to upload the video and documents related to the project and also can scrutinize the existed projects. For that different framework are used such as python flask, Azure cloud, Collaborative Filtering etc. These frameworks are able to store and provide better methodology of learning. Therefore, this paper aim-at providing simple interface for gathering information regarding designing of project
- …