558 research outputs found

    Studies on the effect of doxorubicin on MDA, NO2, NO3, Se-GSH peroxidase and SOD levels in albino rat tissues

    Get PDF
    Doxorubicin, a highly effective anticancer drug, produces cardiotoxicity, which limits its therapeutic potential. The mechanism of this cardiotoxicity has remained elusive. The use of this drug, however,continues to be limited by its dose-related and time interval toxicity. Reactive oxygen species are hypothesized to be a major factor in the toxicity of doxorubicin. The aim of this work was to investigate theeffect of doxorubicin on dose-related and time interval in rat. The study utilized adult albino rats (120 ± 5 g). They were divided into 8 groups of 7 animals each and were kept under standard laboratory conditions.They had free access to commercial pellet diet and water. The room temperature was maintained at 20 ± 5°C. The study measured rat tissue MDA, NO2, NO3, Se-GSH peroxidase and SOD under Dox stress, and the results indicate that MDA and NO generated in Dox treated samples cause neuro, myo, hepato and renal toxicity. Since SOD and Peroxidase are scavenging molecules, increase in their levels in Dox treated samples may be one of mechanism to overcome Dox caused oxidative stress in Dox treated albino rat

    ExtSwap: Leveraging Extended Latent Mapper for Generating High Quality Face Swapping

    Full text link
    We present a novel face swapping method using the progressively growing structure of a pre-trained StyleGAN. Previous methods use different encoder decoder structures, embedding integration networks to produce high-quality results, but their quality suffers from entangled representation. We disentangle semantics by deriving identity and attribute features separately. By learning to map the concatenated features into the extended latent space, we leverage the state-of-the-art quality and its rich semantic extended latent space. Extensive experiments suggest that the proposed method successfully disentangles identity and attribute features and outperforms many state-of-the-art face swapping methods, both qualitatively and quantitatively

    Validation of Potential Fishing Zone (PFZ) Advisories (2006 – 2007)

    Get PDF
    The Potential Fishing Zone (PFZ) Advisories are being generated and disseminated by Indian National Centre for Ocean Information Services (INCOIS). The methodology used for generation of these advisories and the scientific basis behind the identification of the PFZ locations was described. With a view to validate these PFZ Advisories and to assess the potential benefits to the fishing community, INCOIS had undertaken PFZ validation experiments at various places under the leadership of fishery experts. Simultaneous fishing operations have been conducted within the PFZ Areas and outside PFZ Areas using identical vessels. The quantitative results of the experiments were described

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    Alterations of brain and cerebellar proteomes linked to Aβ and tau pathology in a female triple-transgenic murine model of Alzheimer's disease

    Get PDF
    The triple-transgenic Alzheimer (3 × Tg-AD) mouse expresses mutant PS1M146V, APPswe, and tauP301L transgenes and progressively develops plaques and neurofibrillary tangles with a temporal- and region-specific profile that resembles the neuropathological progression of Alzheimer's disease (AD). In this study, we used proteomic approaches such as two-dimensional gel electrophoresis and mass spectrometry to investigate the alterations in protein expression occurring in the brain and cerebellum of 3 × Tg-AD and presenilin-1 (PS1) knock-in mice (animals that do not develop Aβ- or tau-dependent pathology nor cognitive decline and were used as control). Finally, using the Ingenuity Pathway Analysis we evaluated novel networks and molecular pathways involved in this AD model. We identified several differentially expressed spots and analysis of 3 × Tg-AD brains showed a significant downregulation of synaptic proteins that are involved in neurotransmitter synthesis, storage and release, as well as a set of proteins that are associated with cytoskeleton assembly and energy metabolism. Interestingly, in the cerebellum, a structure not affected by AD, we found an upregulation of proteins involved in carbohydrate metabolism and protein catabolism. Our findings help to unravel the pathogenic brain mechanisms set in motion by mutant amyloid precursor protein (APP) and hyperphosphorylated tau. These data also reveal cerebellar pathways that may be important to counteract the pathogenic actions of Aβ and tau, and ultimately offer novel targets for therapeutic intervention

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Polymorphic Structures of Alzheimer's β-Amyloid Globulomers

    Get PDF
    Misfolding and self-assembly of Amyloid-β (Aβ) peptides into amyloid fibrils is pathologically linked to the development of Alzheimer's disease. Polymorphic Aβ structures derived from monomers to intermediate oligomers, protofilaments, and mature fibrils have been often observed in solution. Some aggregates are on-pathway species to amyloid fibrils, while the others are off-pathway species that do not evolve into amyloid fibrils. Both on-pathway and off-pathway species could be biologically relevant species. But, the lack of atomic-level structural information for these Aβ species leads to the difficulty in the understanding of their biological roles in amyloid toxicity and amyloid formation.Here, we model a series of molecular structures of Aβ globulomers assembled by monomer and dimer building blocks using our peptide-packing program and explicit-solvent molecular dynamics (MD) simulations. Structural and energetic analysis shows that although Aβ globulomers could adopt different energetically favorable but structurally heterogeneous conformations in a rugged energy landscape, they are still preferentially organized by dynamic dimeric subunits with a hydrophobic core formed by the C-terminal residues independence of initial peptide packing and organization. Such structural organizations offer high structural stability by maximizing peptide-peptide association and optimizing peptide-water solvation. Moreover, curved surface, compact size, and less populated β-structure in Aβ globulomers make them difficult to convert into other high-order Aβ aggregates and fibrils with dominant β-structure, suggesting that they are likely to be off-pathway species to amyloid fibrils. These Aβ globulomers are compatible with experimental data in overall size, subunit organization, and molecular weight from AFM images and H/D amide exchange NMR.Our computationally modeled Aβ globulomers provide useful insights into structure, dynamics, and polymorphic nature of Aβ globulomers which are completely different from Aβ fibrils, suggesting that these globulomers are likely off-pathway species and explaining the independence of the aggregation kinetics between Aβ globulomers and fibrils
    corecore