33,869 research outputs found
Controllability of inherently damped large flexible space structures
Graph theoretic techniques are used to study controllability of linear systems which represent large flexible orbiting space systems with inherent damping. The controllability of the pair of matrices representing the system state and control influence matrices is assured when all states in the model are reachable in a digraph sense from at least one input and also when the term rank of a Boolean matrix whose non trivial components are based on the state and control influence matrices has a term rank of the order of the state vector. The damping matrix does not influence the required number of actuators but gives flexibility to the possibility locations of the actuators for which the system is controllable
The dynamics and control of large flexible space structures, 2. Part A: Shape and orientation control using point actuators
The equations of planar motion for a flexible beam in orbit which includes the effects of gravity gradient torques and control torques from point actuators located along the beam was developed. Two classes of theorems are applied to the linearized form of these equations to establish necessary conditions for controlability for preselected actuator configurations. The feedback gains are selected: (1) based on the decoupling of the original coordinates and to obtain proper damping, and (2) by applying the linear regulator problem to the individual model coordinates separately. The linear control laws obtained using both techniques were evaluated by numerical integration of the nonlinear system equations. Numerical examples considering pitch and various number of modes with different combination of actuator numbers and locations are presented. The independent model control concept used earlier with a discretized model of the thin beam in orbit was reviewed for the case where the number of actuators is less than the number of modes. Results indicate that although the system is controllable it is not stable about the nominal (local vertical) orientation when the control is based on modal decoupling. An alternate control law not based on modal decoupling ensures stability of all the modes
On the shape and orientation control of an orbiting shallow spherical shell structure
The dynamics of orbiting shallow flexible spherical shell structures under the influence of control actuators was studied. Control laws are developed to provide both attitude and shape control of the structure. The elastic modal frequencies for the fundamental and lower modes are closely grouped due to the effect of the shell curvature. The shell is gravity stabilized by a spring loaded dumbbell type damper attached at its apex. Control laws are developed based on the pole clustering techniques. Savings in fuel consumption can be realized by using the hybrid shell dumbbell system together with point actuators. It is indicated that instability may result by not including the orbital and first order gravity gradient effects in the plant prior to control law design
On the shape and orientation control of an orbiting shallow spherical shell structure
A proposed method for controlling the shape and orientation of very large shallow dish type receiver/reflectors to be used in communication, radiometry and in electronic orbital based mail systems involves connecting a rigid light weight dumbell with heavy tip masses to the shell at its apex by a spring loaded double gimballed joint with dampling. To completely damp the system transient motion in all of the important lower frequency modes, an active control system is required. A mathematical model is extended to include the effects of point actuators located at preselected positions on the shell surface. The formulation of the uncontrolled dynamics assumes an a priori knowledge of the frequencies of all the elastic modes to be incorporated within the system model. As an example, three rigid body modes and six elastic modes are included in the model and six actuators are assumed, none of which lies on a nodal line or circle
Stability analysis of large space structure control systems with delayed input
Large space structural systems, due to their inherent flexibility and low mass to area ratio, are represented by large dimensional mathematical models. For implementation of the control laws for such systems a finite amount of time is required to evaluate the control signals; and this time delay may cause instability in the closed loop control system that was previously designed without taking the input delay into consideration. The stability analysis of a simple harmonic oscillator representing the equation of a single mode as a function of delay time is treated analytically and verified numerically. The effect of inherent damping on the delay is also analyzed. The control problem with delayed input is also formulated in the discrete time domain
The dynamics and control of large flexible space structures, 8
A development of the in plane open loop rotational equations of motion for the proposed Spacecraft Control Laboratory Experiment (SCOLE) in orbit configuration is presented based on an Eulerian formulation. The mast is considered to be a flexible beam connected to the (rigid) shuttle and the reflector. Frequencies and mode shapes are obtained for the mast vibrational appendage modes (assumed to be decoupled) for different boundary conditions based on continuum approaches and also preliminary results are obtained using a finite element representation of the mast reflector system. The linearized rotational in plane equation is characterized by periodic coefficients and open loop system stability can be examined with an application of the Floquet theorem. Numerical results are presented to illustrate the potential instability associated with actuator time delays even for delays which represent only a small fraction of the natural period of oscillation of the modes contained in the open loop model of the system. When plant and measurement noise effects are added to the previously designed deterministic model of the hoop column system, it is seen that both the system transient and steady state performance are degraded. Mission requirements can be satisfied by appropriate assignment of cost function weighting elements and changes in the ratio of plant noise to measurement noise
Phase Structure of 2-Flavor Quark Matter: Heterogeneous Superconductors
We analyze the free energy of charge and color neutral 2-flavor quark matter
within the BCS approximation. We consider both the homogeneous gapless
superconducting phase and the heterogeneous mixed phase where normal and BCS
superconducting phases coexist. We calculate the surface tension between normal
and superconducting phases and use it to compare the free energies of the
gapless and mixed phases. Our calculation, which retains only the leading order
gradient contribution to the free energy, indicates that the mixed phase is
energetically favored over an interesting range of densities of relevance to 2
flavor quark matter in neutron stars.Comment: 11 pages, 4 figures. Major Revisions. Includes a detailed discussion
of the kinetic terms of the effective theory, instabilities of the gapless
phase and the charge neutral phase diagra
- …