A Reproduced Copy

 OFNASA CR-158,684

Reproduced for NASA
by the
NASA Scientific and Technical Information Facility

HRMAE BEPY
い N ? : M8
LANGLEY RESEARCH ifnter
ligfarty, nasa
HAMAPTON, VIREINIA

(NASA-CB-153684) THE DTHAHICS AMD COMABOL.
OP LARGE FLEXIBIE SPACE Structures, 2. part
A: SHAPE ARD ORIENTATION COHTROL OSIBG DOTE' ACTUATORS Final Report (Howard Univ-) Uncles 78 P KC AOL, AP AC i CSCE 22B G3/14 22226

FINAL REPORT
NASA GRANT: NSG-1414, Supp.. 1
THE DYNAMICS AND CONTROL G f
large flexible space structures-it
I ARIA: SHAPE AND JRIENTATION
CONTROL USING POINT ACTUATORS

HOWARD UNIVERSITY
SCHOOL OF ENGINEERING
DEPARTMENT OF MECHANICAL ENGINEERING WAShINGTON, DC. 20059

HOWARD UNIVERSITY
SCHOOL OF ENGINEERING
DEPARTMENT OF MECHANICAL ENGINEERING
WASHINGTON, D.C. 20059

FINAL REPORT
NASA GRANT: NSG-1414, Suppl. 1

THE DYNAMICS AND CONTROL OF
LARGE FLEXIBLE SPACE STRUCTURES - II

PART A: SHAPE AND ORIENTATION CONTRCL USING POIN: ACTUATORS
by

Peter M. Bainum
Erofessor of Aerccpece Engineering
Principal Iuvestigator
and
A.S.S.R. Reddy

Graduate Research Assistant

June 1979

The equations of planar motion for a long, flexible free-free beam in orbit are developed and include the effects of gravitygradient torques and control torques resulting from point actuators located along the beam. The actuators control both the orientation and the shape of the beam. Two classes of theorems are applied to the linearized form of these equations to establish necessary and sufficient conditions for controllability for preselected accuator configurations. It is meen that the nurber of actuators, if properly located, can be less than the nunber of modes in che uodel. After establishing the controllability of the system, the feedback gains are selected: (1) based on the decuupling of the original coordinates and to obtain proper lamping and (ii) by applying the linear regulator problem to the individual modal coordinates separately. The inear control laws obtained using both techniques are then evaluated by numerical integration of the nonlinear system equations. Niumerical examples are givea considering pitch and various number of modes with different combination of actuator numbers and locations. The independent modal control concept used earlier with a discretized model of the thin beam in orbit is reviewed for the case where the number of actuators is less than the number of modes. It is seen that although the system is controllable it is not stable about the nominal (local vertical) orientation when the control is based on modal decoupling. An alternate control law not based on rodal decoupling ensures stability of all the modes.
Page
Abstract
I. Introduction I-1
I. 1 References - Introduction I-3
II. On the Controllability of a Lorg Flexible Beam in Orbit IT-1
II. 1 Introduction II-1
II. 2 Mathematicai Modeliing II-2
II. 2A Equations of Motion for a Thin Beam in Orbit II-2
II.2B Modelling of Point Actuators along the Beam II-4
II. 3 Controllability II-6
II.3A Statement of Controllability Theorems II-6
II. 3B Application of the Controllability Theorems II-8
II. 4 Numerical Example II-11
II. 5 Concluding Remarks II-14
II. 6 References - Chapter II II-15
III. Decoupling Control of a Long Flexible Beam in Orbit III-1
III. 1 Introduction III-1
III. 2 Decoupling by State Variable Feedback III-3
III. 3 Linear Regulator Problem III-6
III. 4 Numerical Example III-8
III. 5 Conclusions II 1 -19
III. 6 References - Chapter III III-19
Iv. Comparison with Results Based on Independent Modal Control IV-1
IV. 1 References - Chapter IV IV-7
V. General Conclusions and Recomendations "-1

$$
\text { Appendices . } \quad \text { Page }
$$

A. Evaluation of Modal Mass. A-1
B. Computer Program for Solving $\dot{X}=A X+B U$. B-1
C. Computer Program for Simulating the Nonlinear Equations C-1 of Hotion of fl: Beam.

List of Figures by Chapters
Eig. No. Caption Page

Chapter II

Fig. 1.
Beam Co.afiguration with First Mode
Deflection and p Actuators \quad II-2

Fig. 2.
Case 1 - Controlled Response, Pitch + Two Hodes with One Actuator at Left End

Chapter III

Fig. 1. Beam Configuration with First Mode Deflection and p Actuators

Fig. 2.

Decoupled Controlled Response Pitch + Two Modes with Three Actuators $(-\ell / 2, \ell / 2, \ell / 4)$

III-10

Fig. 3. Decoupled Controlled Response Pitch + Four Modes with Five Actuatr,rs $(-l / 2,-\ell / 4,0, \ell / 4, \ell / 2)$

Fig. 4.
Linear Regulator Application Controlled Response - Pitch + Four Modes with Five Actuators $(-\ell / 2,-\ell / 4,0, \ell / 4, \ell / 2$)

Chapter IV
Fig. 1.
Three Mass System Configuration
IV-2

I. Introduction

The present grant represents a rontinuation of the effort attempted In the previcus grant year (May 1:/7-May 1978) and reported in Refs. 1 and 2.* In Ref. 1, a discretized planar model of a free-free beam in orbit was developed assuming the beam to be represented by a maximum of three point masses connected by idealized springs which accounted for the structural restoring effects. First order effects of gravity-gradient torques were included. It was asp:imed that two of the discrete masses vere at the ends of the beam and that the third mass was at an interior position, later taken to be at the middle, when the bean was undeflected, and along the local vertical. Control was assumed to be reallzed by the action of one or two aituators located at the end masses, and implemented according to the concept of distributed modal control. 3 According to this concept, airect independent control in each mode considered is possible when the number of actuators is equal to the number of modes in the system model (neglecting the effects of higher modes not included in the model); when the number of actuators (P) is less than the number of wodes (N) direct control of P modes may be implemented by proper selection of control law gains and the remaining N-P modes are effected acrording to the residual coupling in the control influence matrix arnording to the gains selected for the P artuators.

In Ref. 2, a mathematical model of a long, flexible free-free beam in orbit was obtained using the formulation developed by Santini ${ }^{4}$ (in modified vector form) which develops the general equations of a flexible spacecraft in a gravitational fiald. The motion of a generic point in the body is described as a superposition of rigid body motion plus a combination of the flexible structural modes. The beam's center of mass was issumed to follow a circular orbat, the beam considered to be long and slender (shear deformation and rotational inertia effects neglected), and the dxial deformation was assumed much smaller than the lateral deformation due to bending. In kef. 2 , the emphasis was placed on the analysis of the uncontrolled dyramics of this system where motion was restricted to occur only within the orbit plane; the equations of motion consisted of: a single equation describing the ir plane (pitch) libration (rigid body rotational mode) and " n " generic modal equations expressed in terms of the vibrational modal amplitudes as the variables. For planar motion with only flexural vibrations, it was seen that the pitch motion was not influenced by the beam's elastic motion.

[^0]For large values of the ratio of the structural modal frequency to the orbital angular rate, the siastic motion and pitch were decoupled; for small values of this ratio, the elastic motion was found to be governed by a Hill's three-ter: $2 q u a t i o n$ which could be approximated by a Mathieu equation, and the resulting stability considered by means of a Mathieu stability chart. Numerical simulations verified the posaibility of vibrational instability for very long flexible beams in near-earth orbits.

In this report the control of an orbiting beam based on the continuum model of Ref. 2 with point actuators along the beam is examined. The format adapted in preparing this report is as follows: Two papers to be presented at the following conferences respectively, form the bases for Chipters II and III:

1. Second AIAA Symposium on Dy:amics and Control of Large Flexible Spacecraft, June 21-23, 1979, Blacksburg, Va.
2. 1979 AAS/AIAA Astrodynamics Conference, Provincetown, Mass., June 25-27, 1979 (only the contributions by A.S.S.R. Reddy and P.M. Bainum are included here).

The first paper is concerned mainly with the modelling of point actuators, controllability conditions for a preselected set of actuators and a sample numerical case with one actuator and pitch plus two modes in the model. The second paper describes two control gain selection techniques using state variable feedback. The first technique uses decoupling of the original linearized equations of motion as a criteria to select gains and the second one applies the linear regulator problem to the system equations expressed in the independent modal coordinates.

In Chapter IV the independent modal control concept as apolied to a discrete model of the orbiting beam developed earlier, 1 is reexamined according to controllability and stability considerations.

References are given separately for Chapters II, III, and IV. Symbols are defined in the text when and where they are used.

Chapter V describes the general conclusions together with recomendations for future work.

The introductions of Chapters II and III provide further details of the state of the art of beam modelling with relevant references.

I. 1 References

1. Bainum, P.M. and Sellappan, R., "The Dynamics and Control of Large Flexible Space Structures," Final Report NASA Grant: NSG-1414, Part A: Discrete Model and Modal Control, Howard University, May 1978.
2. Bainum, P.M., Kumar, V.K., and James, P.K., "The Dynamics and Control of Large Flexible Space Structures," Final Report, NASA Grant: NSG-1414. Part B: Development of Continuum Model and Computer Simulation, Howard University, May 1978.
3. Advanced Tech. Lab. Program for Large Space Structures, Rockwell International SD-76-SA-0210, Nov. 1976, Appendix B, Modal Control of Flexible Spacecraft.
4. Santini, P. "Stability of Flexible Spacecrafts," Acta Astronautica, Vol. 3, pp. 685-713, 1976.
II. On the Controllability of Long Flexible Beam in Crbit.

Abstract

The equations of planar motion for a long, flexible free-free beam in orbit are developed and include the effects of gravity-gradient torques and control torques resulting from actuators assumed to be located at specific points along the beam. The control devices are used to control bcth the orientation as well as the shape of the beam. Application of two classes of theorems to the linearized form of these equations is used to establish necessary and sufficient conditions for controllability for different combinations of number/location of actuators with the number of modes contained in the mathematical model. It is seen that the number of actuators, if properly located, can be less than the number of modes in the system model. A numerical example illustrates the controlled response to an initial perturbation in both pitch angle as well as beam shape.

1. Introduction

Large, flexible space systems have been proposed for future use in communications, electronic orbital-based mail systems, and as possible collectors of solar energy for transmittal to power stations on the earth's surface. 1,2 Because of the inherent size and necessarily low weight to area ratio, the flexible parts of such systems become increasingly important and in some cases the entire system must be treated as being non-rigid. For mfeting the requirements of these (and other) proposed missions, it will often be necessary to control both the geometrical shape as well as the orientation of the conifguration.

Previously the formulation of the dynamics of a general flexible body in orbit was provided by Santinı. As a specific example, the equations of motion for an uncontrolled long, flexible uniform freefree beam in orbit were developed using a slightly modified version of the Santini formulation. 4 The motion of a generic point in the body was described as the superposicion of rigid body motion plus a combination of the elastic modes. Furiher it was assumed that the system center of mass followed a circular orbit and that the pitch (rotation) and flexural deformations occurred within the orbital plane; also the elastic motion was assumed to be the result of only flexural vibrations.

The equations were inearized about a postion of zero structural deformetion and alignment of the beam along either the local vertical or orbit tangent. It was seen that, in the absence of control, for small amplitude pitch, the pitch equation was uncoupled from the generic modal equations and that the generic modal equations were dymamically coupled with pitch only through a second order velocity term. Numerical simulations - vertfied the possibility of vibrational instability for very long flexible beams in near-earth orbits. 4

In the present paper, the uncontrolled system considered in Ref. 4 will be modified to include the eifect of actuators located at specific point locations along the beam (Fig. 1). The modelling of actuator forces will be restricted to the case where the elastic displacements remain small as compared with typical beam dimensions of the order of hundreds of meters. For preselected sets of control devices (number and location) and the total number of modes in the system model, controllability conditions will be examined and some repressntative numerical results showing the rontrolled response of an initially perturbed system will be discussed.

Figure 1: Beam Configuration with First Mode Deflection and p Actuators.
2. Mathematical Modelling
A. Equations of Kotion for a Thin Beam in Orbit

The equations of motion for a thin homogeneous uniform beam whose center of mass is assumed to follow a circular orbit have been developed in Ref. 4. For the case where all rotations and transverse elastic displacements are assumed Lo occur within the plane of the orbit, and where the earth's gravitarional field is considered to be spherically
symmetric, these equations can be reduced to (Eqs. (24) - (25) of Ref. 4):

$$
\begin{align*}
& \frac{d^{2} \theta}{d t^{2}}+\left(3 \omega_{c}^{2} \sin 2 \theta\right) / 2=T_{p}=N_{p} / J \tag{1}\\
& \frac{d^{2} A_{n}}{d t^{2}}+\left[\omega_{n}^{2}-\omega_{c}^{2}\left(3 \sin ^{2} \theta-1\right)-\left(\frac{d \theta}{d t}-\omega_{c}\right)^{2}\right] A_{n}=E_{n} / M_{n} \tag{2}
\end{align*}
$$

where
$\theta(t)$ represents the pitch angle between the undeformed
longitudinal axis and the local vertical
$A_{n}(t)$ is the modal amplitude of the r th generic mode
ω_{n} is the nth modal natural frequency
ω_{c} is the orbital angular rate
T_{p} is the external pitch acceleraticn, N_{p} / J
E_{n} is the effect of external forces on the n generic mode
M_{n} is the generalized mass of the beam in its $n^{\text {th }}$ mode
It was further assumed that all elastic dis?lacements are small as compared with the beam length. It can be concluded that there is no first order influence by the elastic motion on the rigid body pitch mo.ion, but that the pitch motion affects the elastac motion due to ifgher order coupling. When the zatio of structural modal frequency to orbital rate is small and the pitch amplituje is small, it is shown ${ }^{4}$ that the uncontrolled elastic motion can be approximated byaMathieu equation, and with ti: a aid of a Mathieu chart parametric instability regions can be readily identified.

For the development of the actuator modelling and subsequent corsideration of controllability, Equations (1) and (2) will be linearızed, and time and length will be nondimensionalized according to

$$
\begin{align*}
\tau & =\omega_{c} t \tag{3}\\
z_{n} & =A_{n} / \ell \tag{4}
\end{align*}
$$

where $\ell=$ length of the undeformed f aam.
The resulting lanearized system equations are:

$$
\begin{align*}
& \frac{d^{2} \theta}{d \tau^{2}}+3 \theta=T_{p} / \omega_{c}^{2} \tag{5}\\
& \frac{d^{2} z_{n}}{d \tau^{2}}+\left(\frac{\omega_{n}}{\omega_{c}}\right)^{2} z_{n}=E_{n} / M_{n} \ell \omega_{c}^{2} ; n=1,2, \ldots \tag{6}
\end{align*}
$$

D.M. TAINUM ARD A.S.S.R. REDDY

By defining

$$
\text { and } \quad d \theta / d \tau=\dot{x}_{1}=x_{n+1}
$$

eqs. (5) and (6) may be written in the standerd form:

$$
\dot{X}=\left[\begin{array}{c:c}
0 & I \tag{8}\\
\hdashline-E & I \\
\hdashline- & 0
\end{array}\right] X+B_{c} U_{c}
$$

where $\quad x=\left[x_{1}, x_{2}, \cdots x_{n}, x_{n+1}, \cdots x_{2 n}\right]^{T}$, state vector
$0=$ nxn null matrix
$I=n \times n$ identity matrix

$$
A=\left[\begin{array}{llll}
3 & & \\
& \left(\omega_{1} / \omega_{c}\right)^{2} & & \\
& & \cdots & \left(\omega_{\left.n-1 / \omega_{c}\right)^{2}}\right.
\end{array}\right]
$$

$$
B_{c}=\left\lceil\frac{1}{\left\lfloor\frac{1}{I}\right.}\right\rfloor
$$

$$
U_{c}=\left[m_{p} / \omega_{c}^{2}, E_{1} / M_{1} \ell \omega_{c}^{2}, \ldots E_{n-1} / M_{n-1} 2 \omega_{c}^{2}\right]^{T}
$$

and represents the control vector

B. Modelling of the Point Actuators along the Beam

It is assumed that p actuators be located along the bean at points ξ_{1}, ξ_{2}, . . $\xi_{\text {p }}$, where ξ lies along the beam's undeformed longitu己inal axis and $\xi=0$ corre,ponds to the mass center of the undeformed beam. The actual control furcas associated with these actuators will be desigiated f_{1}, f_{2}, . . f_{j}. . . f_{p}, respectively. For small elastic displacements the component of the control force, f_{J}, parallel to the ξ axis is very small and the component parallei to the ζ dxis an be approximated by f_{y}. Thus the control torque due to the j th actuator may be expressed by

$$
\begin{equation*}
\bar{N}_{F_{j}}=\int \overline{\mathrm{r}} \times \overline{\mathrm{F}}_{j} \mathrm{~d} \mathrm{~m} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& \bar{f}_{j} \simeq \bar{k} f_{j} \delta\left(\xi-\xi_{j}\right) \\
& \bar{r}=\xi_{j} \bar{i}+\bar{q}_{j}\left(\xi_{j}\right) \\
& \bar{q}_{j}=\sum_{n=1}^{[} \phi_{z}^{n}(\xi) A_{n}(t) \bar{k}
\end{aligned}
$$

and $\quad \phi_{z}^{n}$ is the $z \frac{\text { th }}{}$ component of the modal shape function corresponding to the nth mode
After integration there results

$$
\begin{equation*}
\bar{N}_{p_{j}}=-\bar{j} f_{j} \xi_{j} \times \text { (const for a uniform beam) } \tag{10}
\end{equation*}
$$

For convenience the constant will subsequently be incorporated into f_{j}. It is then clear that for p actiators,

$$
\begin{equation*}
\bar{N}_{p}=\sum_{j} \bar{N}_{p_{j}}=-\bar{j}\left[f_{1} \xi_{1}+f_{2} \xi_{2}+\ldots+f_{p} \xi_{p}\right] \tag{11}
\end{equation*}
$$

and that this lerm divaded by the pitch axas moment of inertia, J, provides t'se control acceleration for the pitch motion.

For the generic modal equations the control forces can be transformed int? the corresfonding modal forces by 3,4

$$
\begin{equation*}
E_{n_{j}}=\int \bar{\phi}^{n} \cdot \bar{f}_{j} d m \tag{12}
\end{equation*}
$$

Under the assumptions previousiy stated,

$$
\begin{equation*}
E_{n_{j}}=f_{j} \phi_{z}^{n}\left(\xi_{j}\right) x \text { (const.) } \tag{13}
\end{equation*}
$$

As before, the co.stant will be incorporated inco f_{j} so that the effect of ali p th:usters on the nth generic mode can be expressed by

$$
\begin{equation*}
E_{n}=f_{1} \phi_{z}^{n}\left(\xi_{1}\right)+\ldots+f_{p} \phi_{z}^{n}\left(\zeta_{p}\right) \tag{14}
\end{equation*}
$$

The control vector, U_{c}, can now be related to the actuator forces, actuater locations, and modal shape funetions by

$$
\begin{aligned}
& \text { nxp }
\end{aligned}
$$

If the nxp matrix appuaring in Eq. (15) is denoted by $\mathrm{B}_{\text {act }}$, then Eq. (8) may be expanded in the following form:

$$
\begin{align*}
& +\left[\begin{array}{c}
0 \\
\mathrm{nxp} \\
-\mathrm{B}_{\mathrm{act}} \\
\mathrm{nxp}
\end{array}\right]\left[\begin{array}{c}
\mathrm{f}_{1} \\
\mathrm{f}_{2} \\
\vdots \\
\mathrm{E}_{\mathrm{p}}
\end{array}\right] \tag{16}
\end{align*}
$$

The modal masses appearing in $B_{\text {act }}$ can be evaluated for homogencous free-free beams and shown $t=$ be intepend nt of the mode number. 5,6 Specifically, $i_{i}-o l$ where ℓ is the undeformed length and ρ represents the mass density per .nit length.

3. Controllability

A. Statement of the Cor.trullability Theorems

Eq. (16) can be written as

$$
\dot{x}=\left[\begin{array}{cc}
0 & I \tag{17}\\
-A & 0
\end{array}\right] \mathrm{X}+\left[\begin{array}{l}
0 \\
B
\end{array}\right]^{f}
$$

where

$$
\begin{aligned}
& X=\left[X_{1}, X_{2}, \cdot \cdot \cdot X_{n}, X_{n+1}, \cdot \cdot X_{2 n}\right]^{T} \\
& I=\operatorname{nxn} \text { iJentity matrix } \\
& B=B_{a c t}, \operatorname{nxp} \operatorname{matrix} \\
& f=\left[f_{1}, f_{2} \cdot \cdot \mathrm{f}_{p}\right]^{T}
\end{aligned}
$$

The system represented by Eq. (17) is controllabie if the pair [A,B] is controllable ${ }^{7}$ - i.e. it can be proven that the controllability matrix associated with the original state and control coefficient matrices

$$
\left[\begin{array}{rr}
0 & I \\
-A & 0
\end{array}\right] \quad, \quad\left[\begin{array}{l}
0 \\
B
\end{array}\right]
$$

has rank $2 n$ if and only if the controllability matrix associated with the palr of reduced statc and control matrices,

$$
[A, B]
$$

has rank n. ${ }^{7}$
Furthermore, if the matrix A has eigenvalues of unit multiplicity (i.e. non-repeated ϵ, senvalues), the system given by Eq. (17) is controllable if and only if aこch row of B has a non-zero entry. 7

For the case where A has repeated eagenvalues (multlplicity greater than onz), the reduced order state matriz, A, can be written in Jordan block matrix form. If the elgenvalues $\lambda_{2},_{m} \lambda_{2}$. . . λ_{m} have multiplicity of n_{1}, n_{2}, . . . n_{m}, respectively, with $\sum_{i=1}^{\sum_{1}^{2}} n_{i}=n$, then A can be transformed as

where

$$
J_{n_{j}}=\left[\begin{array}{ccccc}
\lambda_{i} & 1 & 0-\cdots- & 0 & 0 \tag{19}\\
0 & \lambda_{j} & 1-— — & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0-- & \lambda_{j} & 1 \\
0 & 0--D & 0 & \lambda_{j}
\end{array}\right]
$$

The system (17) can be divided into m subsystems. For the system (17) to be controllable, these m subsystems $n=t h$ tneir corresponding blocks in the B matrix must each be separately controllable.

B. Application of the Controllability Theorems

The theorems briefly outlined here will now be applied to several cases of interest for different combinations of numbers and locations of the actuators along the beam.
Case 1: One actuator at one end of the beam with pitch and two generic modes contained in the mathematical model.

The actuator is assumed to be located at the left end (Fig. 1) $\xi=$ $-\ell / 2$. The first and second modal shape functions for a free-free beam can be evaluated at that point to yield ${ }^{8}$

$$
\phi_{z}^{1}(-\ell / 2)=\phi_{z}^{2}(-\ell / 2)=2
$$

and $M_{1}=M_{2} .5$
The state equation for this system can be exparded in the form of Eq. (17) with the resuit that

$$
A=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & c & 0 \\
0 & 0 & d
\end{array}\right] ; \quad B=\left[\begin{array}{c}
a \\
b \\
b
\end{array}\right]
$$

where

$$
\begin{array}{ll}
a=\ell / 2 J \omega_{c}^{2} & b=2 / M_{1} 2 \omega_{c}^{2} \\
c=\left(\omega_{1} / \omega_{c}\right)^{2} & d=\left(\omega_{2} / \omega_{c}\right)^{2}
\end{array}
$$

The controllability matrix based on the reduced system matrices, A and B, becones

$$
C=\left[\begin{array}{l:l:l}
B & A B & A^{2} B
\end{array}\right]=\left[\begin{array}{lll}
a & 3 a & 9 a \\
b & b c & b c^{2} \\
b & b d & b d^{2}
\end{array}\right]
$$

For controllability the matrix, C, must have a rank of $?$, or

$$
\operatorname{det} C=-a b^{2}(c-d)(c-3)(d-3) \neq 0
$$

'The necessary and sufficient conditions for controllability becone

$$
\omega_{1} \neq \omega_{2} \quad \text { (trivial) } ; \omega_{1} \neq \sqrt{3} \omega_{c} ; \omega_{2} \neq \sqrt{3} \omega_{c}
$$

The last two of these conditions will, in practice, place a lower bounds on the stiffness andor an upper bounds on the length of such a long flexible structure in orbit.

Case 2: Three actuators two of which are assumed to be placed at the ends and one at the mid point of tiae bean, with the mathematical model containing only the first two generic modes.

For this case,
with
$A=\left[\begin{array}{ll}c & 0 \\ 0 & d\end{array}\right] ; \quad B=\left[\begin{array}{rrr}a & a & -b \\ a & -a & 0\end{array}\right]$
$a=2 / M_{1} \ell \omega_{c}^{2} \quad b=\sqrt{2} / M_{1} \ell \omega_{c}^{2}$ with $M_{1}=M_{2}$
and c, d defined as in Case 1.
The controllability matrix may be calculated as

$$
C=\left[\begin{array}{rrr|rrr}
a & a & -b & a c & a c & -b c \\
a & -a & 0 & a d & -a d & 0
\end{array}\right]
$$

It can be seen that since the B matrix itself has rank 2 , then C will automatically have rank 2 and the system concrollability is independent of the nature of the matrix A.

Case 3: Two actuators one each at the ends with pitch plus the firat generic mode in the system model.

For this system the A and B matrices in Eq. (17) become
$A=\left[\begin{array}{ll}3 & 0 \\ 0 & c\end{array}\right]$
$B=\left[\begin{array}{cc}a & -a \\ b & b\end{array}\right]$
with
$a=\ell / 2 J \omega_{c}^{2}$
$b=2 / M_{1} \omega_{c}^{2}$
$c=\left(\omega_{1} / \omega_{c}\right)^{2}$

The resulting controllability matrix

$$
C=\left[\begin{array}{rr:rr}
a & -a & 3 a & -3 a \\
b & b & b c & b c
\end{array}\right]
$$

has rank 2 ,ince the B matrix has rank \dot{c}. Thus, the system controllability is ensured.

Case 4: Three actuators two of which are assumed to be located at the ends and the remaining one at the mid point of the beam; the model contains pitch plus the first two generic modes.

For this case

$$
A=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & c & 0 \\
0 & 0 & d
\end{array}\right] \quad B=\left[\begin{array}{ccc}
a & -a & 0 \\
b & b & -\varepsilon \\
b & -b & 0
\end{array}\right]
$$

with c,d as defined in Case 1
and $a=2 / 2 J \omega_{c}^{2} \quad ; \quad b=2 / M_{1} \ell \omega_{c}^{2} ; \quad e=\sqrt{2} / M_{1} \sum_{c} u_{c}^{2}$
and $M_{1}=M_{2}$.
The controllability matrix,

$$
C=\left[\begin{array}{rrr:lrr:lll}
a & -a & 0 & 3 a & -3 a & 0 & 9 a & -9 a & 0 \\
b & b & -e & b c & b c & -c e & b c^{2} & b c^{2} & -c^{2} e \\
b & -b & 0 & b d & -b d & 0 & b d^{2} & -b d^{2} & 0
\end{array}\right]
$$

must have rank 3 to ensure the system is controllable, which means that from the aine colums it must be shown that at least one 3×3 non-zero determinant exists.

If we arbitrarily select the first, third, and fourth columns,
ther -eab $(\mathrm{d}-3) \neq 0$
which is guaranteed if $\omega_{2} \neq \sqrt{3} \omega_{c}$. Although this is a sufficient condition for controllability at this point we don't know whether it is also a necessary condition.

As an alternate, let us select the first, third, and sixth columns of C; then
$a b^{2}(d-c)(c-3)(d-3) \neq 0$
which will be ensured if the following sufficiency conditions are satisfied:
$\omega_{2} \neq \omega_{1}, \quad \omega_{1} \neq \sqrt{3} \omega_{c}, \quad$ and $\omega_{2} \neq \sqrt{3} \omega_{c}$
In order to establish necessary conditions, we will now assume that any two of the frequencies are the same and then apply the theorem for the case of repeated eigenvalues.
(a) First if it is assumed that $c=d\left(\omega_{1}=\omega_{2}\right)$, the corresponding subsystem matrices are
$A=\left[\begin{array}{ll}c & 0 \\ 0 & c\end{array}\right] \quad B=\left[\begin{array}{rrr}b & b & -e \\ b & -b & 0\end{array}\right]$
Since the B matrix has rank 2, the condition: $c \neq d$, is not necessary for controllability.
(b) If it is assumed $c=3,\left(\omega_{1}=\sqrt{3} \omega_{c}\right)$ the corresponding subsystem matrices are
$A=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right] \quad B=\left[\begin{array}{rrr}a & -a & 0 \\ b & b & -e\end{array}\right]$
Since B has rank 2, the system is controllable for this case.
(c) We now consider the case when $d=3\left(\omega_{2}=\sqrt{3} \omega_{c}\right)$ where the
subsystem matrices are
$A=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right] \quad B=\left[\begin{array}{lll}a & -a & 0 \\ b & -b & 0\end{array}\right]$
and
$C=\left[\begin{array}{ccc|ccc}a & -a & 0 & 3 a & -3 a & 0 \\ b & -b & 0 & 3 b & -3 b & 0\end{array}\right]$
The controllability matrix has oaly one independent column and can not have rank 3 when $\omega_{2}=\sqrt{3} \omega_{c}$.
(d) Finally we consider the case where $3=c=d$ or $u_{\text {pitch }}=\omega_{1}=\omega_{2}$ (admittedly, of only academic interest)
Then

$$
A=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right] \quad B=\left[\begin{array}{rrr}
a & -a & 0 \\
b & b & -e \\
b & -b & 0
\end{array}\right]
$$

and

$$
C=\left[\begin{array}{rrr:ccc:ccc}
a & -a & 0 & 3 a & -3 a & 0 & 9 a & -9 a & 0 \\
b & b & -e & 3 b & 3 b & -3 e & 9 b & 9 b & -9 e \\
b & -b & 0 & 3 b & -3 b & 0 & 9 b & -9 b & 0
\end{array}\right]
$$

It can be observed that the C matrix can not have rank 3.
In conclusion, we can say that only one of the three necessaiy conditions is also a sufficlent condition for controllability, i.e.

$$
\omega_{2} \neq \sqrt{3} \omega_{c}
$$

In actual practice the repeated frequencies assuciated with the modes included in the model will be known so that it is possible to verify in advance of the selection of the control law whether the particular choice $\neg f$ number and location of actuators will result in a controllable system.

4. Numerical Example

A numerical example of Case 1 is considered where it is assured that the control force generated by the single actuator depends on only rate feed-back according to

$$
f_{1}=k_{1} \dot{x}_{1}+k_{2} \dot{x}_{2}+k_{3} \dot{x}_{3}
$$

where the \dot{X}_{i} are the pitch, and non-dimensionalized first, and second modal amplitude derivatives, respectively, with respect to the orbital time, τ.

It is assumed that the fundamental natural frequency of the freefree beam is $1 / 100 \mathrm{cps}$ and that the c.m. moves in a 250 n . mile altitude circular orbit. For this case

$$
\begin{aligned}
& \left(\omega_{1} / \omega_{c}\right)^{2}=3200 \text { and }\left(\omega_{2} / \omega_{c}\right)^{2}=28,800 .
\end{aligned}
$$

As an example, a 100 m . Iong slender hollow tubular beam made of wroughr aluminum (2014T6) and with an outside dianeter of 10.79 cm , and thickness of 1.06 cm , would exhibit tinese frequencies

The completely nontrivial part of Eqs. (16) or (17) may be expanked to yield

$$
\begin{aligned}
& \ddot{x}_{1}+3 x_{1}-59.52 \mathrm{~K}_{1} \dot{x}_{1}-59.52 \mathrm{~K}_{2} \dot{x}_{2}-59.52 \mathrm{~K}_{3} \dot{x}_{3}=0 \\
& \ddot{x}_{2}+3200 x_{2}-20.0 \mathrm{~K}_{2} \dot{x}_{2}-20.0 \mathrm{~K}_{1} \dot{x}_{1}-20.0 \mathrm{~K}_{3} \dot{x}_{3}=0 \\
& \ddot{x}_{3}+28,800 x_{3}-20.0 \mathrm{~K}_{3} \dot{x}_{3}-20.0 \mathrm{~K}_{2} \dot{x}_{1}-20.0 \mathrm{~K}_{2} \dot{x}_{2}=0
\end{aligned}
$$

If we arbitrarily select $K_{1}=-0.00577, K_{2}=-0.05656$, and $K_{3}=$ -0.01695 (note these gains would correspond to much less than critical damping if the other coupling terms in rates did not appear) and assume that the initial conditions are $x_{1}(0)=x_{2}(0)=x_{3}(0)=0.01$ and all initial $\dot{x}_{i}(0)=0$, the controlled response is illustrated in Fig. 2 . The relatively 'nag response time with the relatively low level of peak thrust ,'tulid be noted.

Fig. 2A

Figure 2: Case 1-Controlled Response, Pitch + Two Modes with One Actuator at Left End.

Fig. 2B

Fig. 2C

Figure 2: Case 1-Controlled Response, Pitch + Two Modes with One Actuator at Left End.

Figure 2: Case 1 - Controlled Response, Pitch + Two Modes with One Actuator at Left End.

This example is presented as a verification that the system in Case 1 with the number of actuators less than the number of modes is corcrollable. In a related paper methods of selecting control law gains based on decoupling considerations is discussed. 9 Control gains are selected based on the following two criteria: (i) decoupling of the linearized systen equations with appropriate state variable feedback; and (ii) applying the linear regulator problem to the n modal coordinates separately and thus selecting the gains by solving groups of n two dimensional matrix Riccati equations. ${ }^{9}$

5. Concluding Remarks

In the present paper a model is developed for predicting the dynamics of a long, flexible free-free bean in orbit under the influence of control devices which are considered to act at specific points along the beam. Application of two classes of theorens establishes the necessary and sufficient conditions for controllability and clearly demonstrates that the number of actuators, if properly located, can be less than the number of modes in the system model.

The insight gained by this preliminary study wall be useful in analyzing the dynamics and control of more compiicated structures such as of a large flexible plate in orbit, which more adequately represents a large flexible orbiting platfora. Another possible extension to the current work would be a study of the effect of using control devices which are distributed along the beaa instead of being treated as point actuators.

Acknowlegment

This research was supported by the National Aeronautics and Space Administration Grant No. NSG-1414, Supp1. 1. Special appreciation to Mr. H.A. Hamer and Dr. L. Pinson of the Langley Research Center for their interest and helpful suggestions.

> 6. References - Chapter II

1. Outlook for Space, NASA Report SP-386, January 1976.
2. Industry Workshop on Large Space Struatures, NASA Contractor Report CR-2709, Contract No. NAS-1-12436, for NASA Langley Research Center,
3. Santini, Paolo, "Stability of Flexible Spacecrafts", Acta Astronautica, Vol. 3, 1977, pp. 685-713.
4. Kumar, V.K., and Bainum, P.M., "Dynamics of a Flexible Body in Orbit," AIAA/AAS Astrodynamics Conference, Palo Alto, Calif., August 7-9, 1978, Paper No. 78-1418.
5. Bishop, R.E.D., and Johnson, D.C., The Mecharics of Vibration, Cambridge University Press, 1960, pp. 323.
6. Private Comunication with Dr. Mark J. Balas.
7. Balas, Mark J., "Feedback Control of Flexible Systems," IEEE Trans. on Automatic Control, Vo1. AC-23, No. 4, August 1978, pp. 673-679.
8. Bainum, P.M., Kumar, V.K., and James, P.K., "Dynamics and Control of Large Flexible Space Structures," - Part B, Final Report, NASA Grant NSG-1414, Dept. of Mechanical Engineering, Howard University, May 1978, Appendix IV.
9. Reddy, A.S.S.R., Bainum, P.M. and Hamer, H.A., "Decoupling Control of a Long Flexible Beam in Orbit," 1979 AAS/ATAA Astrodynamics Conference, Provincetown, Mass., June 25-27, 1979.

Control of large flexible systems using state varlable feedback is presented with a long flexible beam in orbit as an example. Once the controllability of the system is established, the feedback gains are selected: (1) based on the decoupling of the original coordinates and to obtain preper domping and (ii) by applying the inear regulator problem to the individual modal coordinates separately. The linear control laws obtained using both techniques are then evaluated by numerical integration of the non-linear system equations. The response of the state together with resulting beam deflection and actuator force (s) required are obtained as functions of time for different combinations of the number/10cation of actuators and the number of modes in the system model. Also included are results showing the effects (control spillover) on the unconcrolled modes when the number of controllers is less than the number of modes, and the effects oi inaccurate knowlege of the control influence coefficients which lead to errors in the calculated feedback gains.

1. Introduction

Future proposed space missions would involve large, inherently flexible systems for use in communications, as collecters of solar energy, and in electronic, orbital-based mail systems. ${ }^{1,2}$ For the first time the flexible parts, and in some cases the entire system, due to its size, must be modelled as being completely flexible. In order to satisfy the requireuents of such missions, it will be necessary to control not only the orientation of the system but also the geometrical shape of the configuration.

As a spectfic example of the general formulation of, t dynamics of an arbitrary flexible body in orbit developed by Santini-; the uncontrolled motion of a long, flexible beam was investigated. 4 The motion of a generic point in the body was described as the superposition of rigid body motion plus a combination of the elastic modes.

Further it was assumed that the systel. center of mass followed a cj:cular orbit ind that the pitch (rotation) and flexural deformations occured within the orbital piane. For this planar motion, it was seen that the pitch motion was not influenced by the beam's elastic motion. The decoupling of pitch and the elastic modes was observed for large values of the ratio of the structural modal frequency to the orbital angular rate. When the values of this ratio are small the elastic motion is governed by a Hill's three-term equation which could be approximated by a Mathieu equation, and the resulting stability was considered by means of a Mathieu stability chart. Numerical simulations verified the possibility of vibrational instatility for a very long uncontrolled flexible beam in near-earth orbits. ${ }^{\text {f }}$

The controllability of a long flexible bean with point actuators located along the bem is considered in Ref. 5 for the case of small amplitude flexural deformations (Fig. 1). Necessary and sufficient conditions for controllability with presclected locations of actuators are derived using theorems developed in Ref. 6. Once controllability is assured, values for the gains in the control laws are selected on an arbitrary basis, and only for one combination of actuator location and number of flexural modes. 5

Fig. 1. Beam Configurazıon with First Mode Deflection and p Actuators.

In the present paper selection of cortrol gains for any larga flexible system using the following two criteria is discussed: (i) decoupling of the linearized system equations with appropriate state variable feedback 7 ; and (ii) applying the linear regulator problen to the modal coordinates (n) separately and, thus, selecting gains by solving groups of " n " two by two matrix Riccati equations. $8,9,10,11$

A long flexible beam in orbit is taken as an exarple with the model developed in Refs. 4 and 5. Gains are selected using the tro techniques and numerical simulation of the non linear equations is employed to predict the responses for sample cases. The deflection of the controlled beam at various inst^nts of time is also illustrated.

2. Decoupling by State Variable Feeduack

After appropriate linearization the dynamic model for any flexible system can be represented by

$$
\begin{equation*}
\ddot{\mathrm{X}}: \mathrm{B} \dot{\mathrm{X}}+\mathrm{CX}=\mathrm{DU} \tag{1}
\end{equation*}
$$

where
A is an nxn non singular matrix
B, C are nxn matrices
D is an nxtm matrix
X is an nxl state vector represant-ng deflections in addition to the rigid body rotations.
U is an mxl control vector
Equation (1) can be written in more standard state space form oy definang

$$
x=x_{1}, \dot{x}=x_{2}=\dot{x}_{1} \text { as }
$$

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{2}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & I \\
-A^{-1} C & -A^{-1} B
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
i_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
A^{-1} D
\end{array}\right] U
$$

Equation (1) takes into account the modelling of any structural damping inherently present in the system. Controllability of the systems reprosented by Equation (2) can not be obtained using theorems developed in Ref. 6 , unless $B=0$. In cases where $B ; 0$, the controllability matrix of the pair

$$
\left[\begin{array}{cc}
0 & I \\
-A^{-1} & -A^{-1} B
\end{array}\right] \text { and }\left[\begin{array}{c}
0 \\
A^{-1} D
\end{array}\right] \text { must have rank in. }
$$

$$
\begin{equation*}
U=K \dot{X}+L X \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& K=m \times n \text { rate feedback gain matrix } \\
& L=\operatorname{mxn} \text { position feedback gain matrix }
\end{aligned}
$$

Equation (1) can be rewritten as:

$$
\begin{equation*}
\ddot{X}+\left(A^{-1} B-A^{-1} D K\right) \dot{X}+\left(A^{-1} C-A^{-1} D L\right) X=0 \tag{4}
\end{equation*}
$$

For decoupling of the states $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$
the matrices $\left(A^{-1} B-A^{-1} D K\right)$ and $\left(A^{-1} C-A^{-1} D_{L}\right)$ must be diagonal.

$$
\text { i.e. } \begin{align*}
A^{-1} B-A^{-1} D K & =\zeta \tag{5}\\
A^{-1} C-A^{-1} D L & =\omega \tag{6}
\end{align*}
$$

where

$$
\zeta=\left[\begin{array}{cccc}
\zeta_{11} & 0 & \ldots & 0 \tag{7}\\
0 & \zeta_{22} & \ldots & 0 \\
1 & \vdots & & 1 \\
\vdots & 1 & & 1 \\
0 & 0 & \ldots & \zeta_{n n}
\end{array}\right] \text { and } \omega=\left[\begin{array}{cccc}
\omega_{11} & 0 & & 0 \\
0 & \omega_{22} & \ldots & 0 \\
\vdots & 1 & & \vdots \\
\vdots & 1 & & \vdots \\
0 & 0 & \ldots & \omega_{n n}
\end{array}\right]
$$

Redefining

$$
\begin{align*}
& A^{-1} B=E, \quad A^{-1} C=F \\
& A^{-1} D=G \tag{9}
\end{align*}
$$

we have

$$
\begin{align*}
\text { E. } \quad K & =\zeta \tag{10}\\
F-G L & =\omega \tag{11}
\end{align*}
$$

with

$$
\begin{aligned}
& K_{i}=i^{\text {th }} \text { column of the } K \text { matrix } \\
& L_{i}=i^{\text {th }} \text { column of the } L \text { matrix }
\end{aligned}
$$

$$
\begin{aligned}
& E_{i}^{\prime}=i^{\text {th }} \text { column of }(E-\zeta) \text { matrix } \\
& F_{i}^{\prime}=i^{\text {th }} \text { column of }(F-\omega) \text { matr } 1 x
\end{aligned}
$$

Equarions (10) and (11) can be uritcen as $2 n$ sets or algeiraic equations of the form:

$$
\begin{array}{ll}
\mathrm{GK}_{1}=E_{1}^{\prime} \tag{12}\\
G L_{i}=E_{1}^{\prime}
\end{array} \quad 1=1,2, \ldots n
$$

Consider one of the above sets of Inear algebra': equations for the case whese $1=1$,

$$
\begin{equation*}
G K_{1}=E_{1}^{\prime} \tag{13}
\end{equation*}
$$

There are n equations and m unknowns (the eiements in the first column of the Kmatilx). The fundamental theorem for a set of n linear equations with m unknowrs is now applied 12,13 :

For a unique solution:

Case :: If $n>m$ (more equations and less unknowns) the rank of G and the augumented matrix $\left[G, E_{1}^{\prime}\right]$ must be n.
Case 2: If $n=m$ (number of equations $=$ number of unknowns) the rank of G and the augumented matrix $\left[G ; E_{1}\right]$ musi. be m (or n) - i.e. G must be non-singular.

Case 3: If $n<m$ (less equations, more unknowns) no unique solution exists.

For non-trivial solution:
Sase 1.: If $n>$ m (more equations and less unknowns), the rank of G and the augumented matrix $\left[G i E_{1}^{\prime}\right] \leq m$.

Case 2: If $n=m$ (number of equations $=$ number of unknowns), the rank of G and the augumented matrix $\left[G ; E_{1}^{\prime}\right] \leq m$. If the rank $=m=n$, a unique solution exists.

Case 3: Tf $n<m$ (1ess equations and more unknowns) the rank of G and the agumented matrix $\left[G ; E_{1}^{\prime}\right] \leq n$.

These conditions mist be satisfied by the 2 n subsystems given by (12) for decoupling to be implamented and, thus, dictale the choice of the actuators.

For cases where the number of actuatcrs are more or less tinan the number of original coorainates in the syotem, the controllability conritions and the conditions to be satisfiod for decoupling may pose numerical (computational) problems, esvecially when the order of the syster $i=$ large.

When the number of actuators equals the number of original coordinates all controllability and decoupling conditions depend on the non singularity of matrix, G. This matrix: 25 3n nan matrix and can be made noz-singular by properly selecting the location of the actuators.

If there are 6 original coordinates and 3 actuators, then the contrcllability matrix has 36 columns out of which 12 columns must be independent to have rank 12. The maximum number of deteminants to be evaluated are

$$
{ }^{36} C_{12}=\frac{36!}{12!24!}=1.2516775 \times 10^{9} \text { determinants. }
$$

Ausuming a 1 sec . computational time required for the evaluation of each twelth order determinant, the examination of all possible combinations rould involve $347,688 \mathrm{hrs}$. of computer time.

Specific cases, where controllability of this system is examined when the number of actuators differs from the number of modes in the system model are presented in Ref. 5, but only for a low order system $\left(n_{\max }=3\right)$.
3. Linear Regulator Problem

Using modal analysis ${ }^{8,9,10,11}$ dynamical systems represented by
(a):

$$
\begin{equation*}
M \ddot{q}+G \dot{q}+C \dot{q}+K q=u(t) \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
q= & n \text { dimensional vector describing angular and elastic } \\
& \text { displacments } \\
M, K= & \text { positive definite mass and stiffness matrice } \\
G= & \text { gyroscopic antisymetric matrix } \\
C= & \text { pervasive damping, either positive definite or } \\
& \text { semidefinite matrix } \\
u(t)= & \text { control vector }
\end{aligned}
$$

or by (b):

$$
\begin{equation*}
M \ddot{q}+\dot{G} \dot{q}+K q=u(t) \tag{15}
\end{equation*}
$$

with

$$
M=M^{T}, G=-G^{T} \text { and } K=K^{T}
$$

can be transformed to
(a) $\ddot{X}+D \dot{X}+E X=E u=u^{\prime}$
or

$$
\begin{equation*}
\text { (b) } \ddot{X}+F \dot{X}=E u=u^{\prime} \tag{17}
\end{equation*}
$$

with D and F representing the diagonal transformed matrices. The left hand sides of Eqs. (14) and (15) represent oither damped or undamped harmonic oscillator These oscillators can be controlled optimally and independently with one control force for every independent modal coordinate.

The actual control, $u(t)$, in the original coordinates, q_{1}, can be calculated from the control, $u^{\prime}(t)$, in the decoupled (modal) coordinates, x_{1}, by

$$
\begin{equation*}
u=E^{-1} u^{\prime} \tag{18}
\end{equation*}
$$

The $1^{\text {th }}$ component of the control vector, u ', can be calculated as follows:

The $i^{\text {th }}$ independent modal coordinate is governed by

$$
\begin{equation*}
\ddot{x}_{1}+D_{i} \dot{x}_{i}+F_{i} x_{i}=u_{1}^{\prime} \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& D_{i}=i^{\text {th }} \text { diagonal clement of the } D \text { matrix } \\
& F_{i}=i^{\text {th }} \text { diagonal element of the } F \text { matrix }
\end{aligned}
$$

Equation (19) can be written in state space form by defining

$$
\begin{align*}
& x_{i}=x_{1_{1}}, \dot{x}_{i}=x_{i_{2}}=\dot{x}_{1_{1}} \\
& {\left[\begin{array}{l}
\dot{x}_{1_{1}} \\
\dot{x}_{i_{2}}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-F_{i} & -D_{i}
\end{array}\right]\left[\begin{array}{l}
x_{i_{1}} \\
x_{i_{2}}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]{ }^{u_{i}^{\prime}}} \tag{20}
\end{align*}
$$

similar to the standard form

$$
\begin{equation*}
\dot{x}=A x+B u \tag{21}
\end{equation*}
$$

A performance index f 7 r the $i^{\text {th }}$ modal coordinate is defined as

$$
\begin{equation*}
J_{i}=\int_{0}^{\infty}\left(X_{i}^{T} Q_{i} X_{i}+\left(u_{i}^{\prime}\right)^{2} R_{i}\right) d t \tag{22}
\end{equation*}
$$

where

$$
Q_{i}=\left[\begin{array}{cc}
Q_{i_{1}} & 0 \\
0 & Q_{i_{2}}
\end{array}\right] \quad \text { and } R_{i} \text { is a scalar }
$$

The control vector is given by

$$
\begin{equation*}
u_{i}^{\prime}=-R_{i}^{-1} B_{i}^{T} S_{i} x_{i} \quad \text { where } \quad x_{i}=\left[x_{1} x_{i_{2}}\right]^{T} \tag{23}
\end{equation*}
$$

Where S is the symetric matrix solution of the two dimensional Riccati ${ }^{2}$ equation:

$$
\begin{equation*}
-S_{i} A_{i}-A_{i}^{T} S_{i}+S_{i} B_{i} R^{-1} B_{i}^{T} S_{i}-Q=0 \tag{24}
\end{equation*}
$$

with

$$
A_{1}=\left[\begin{array}{rr}
0 & 1 \\
-F_{1} & -D_{1}
\end{array}\right] \quad \begin{aligned}
& B_{1}^{T}=[0,1] \\
& R=R_{1} \text { and } Q=Q_{1}
\end{aligned}
$$

For the second order system represented by Eq. (24), the elements of S_{i} may be solved in closed form with the results

$$
\begin{align*}
& S_{i_{12}}=R_{i}\left[-F_{i} \pm \sqrt{F_{i}^{2}+Q_{i} / R_{i}}\right] \tag{25}\\
& S_{i_{22}}=R_{i}\left[-D_{i} \pm \sqrt{D_{i}^{2}+\frac{1}{R_{i}}\left(Q_{i_{2}}+2 S_{i}\right)}\right] \tag{26}\\
& S_{i_{11}}=F_{i} S_{i_{22}}+D_{i} S_{i_{12}}+\frac{1}{R_{i}} S_{i_{12}} S_{i_{22}} \tag{27}
\end{align*}
$$

where the signs of the radicals are selected such that S_{i} is a positive
Then

$$
u_{i}^{\prime}=-\left[s_{i_{12}}, s_{i_{22}}\right] \quad\left[\begin{array}{l}
x_{1_{1}} \tag{28}\\
x_{i_{2}}
\end{array}\right]
$$

4. Numerical Example

A long flexible free-free beam in orbit is considered to demonstrate the two gain selection =echniques described earlier. The model (Fig. 1) including point actuators is taken from Refs. 4 and 5 and is based on the assumption that all rotations and deformations occur only within the orbital plane. The equations of motion are given by ${ }^{4}, 5$

$$
\begin{align*}
& \frac{d^{2} \theta}{d t^{2}}+3 \theta=\frac{T_{p}}{J \omega_{c}^{2}} \tag{29}\\
& \frac{d^{2} z_{n}}{d t^{2}}+\left(\frac{\omega_{n}}{v}\right)^{2} z_{n}=\frac{E_{n}}{M_{n} \ell \omega_{c}^{2}} \tag{30}
\end{align*}
$$

where

$$
\begin{aligned}
\theta & =\text { pitch angle relative to local vertical } \\
\tau & =\omega_{c} t, \text { normalized time } \\
z_{\eta} & =A_{n}^{c} / \ell, \text { non-dimensiond modal amplitudes } \\
\ell & =\text { length of the beam } \\
\omega_{c} & =\text { orbital angular rate }
\end{aligned}
$$

After defining

$$
\begin{array}{rlrl}
0 & =x_{1} & d \theta / d t=\dot{x}_{1}=x_{n+1} \\
z_{1} & =x_{2} & d z_{1} / d t=\dot{x}_{2}=x_{n+2} \\
z_{n-1} & =x_{n} & d z_{n-1} / d t=\dot{x}_{n}=x_{2 n}
\end{array}
$$

Equations (29) and (30) can be written as

$$
\dot{X}=\left[\begin{array}{ll}
0 & I \tag{31}\\
A & 0
\end{array}\right] X+B_{c} u_{c}
$$

where

$$
\begin{aligned}
& X=\left[x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, \ldots, x_{2 n}\right]^{T} \text { state vector } \\
& 0=n \times n \text { null matrix } \\
& I=\text { non identity matrix }
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
-3.0 & & 0 \\
1 & -\left(\omega_{1}\right. \\
1 & \left(\frac{\omega_{c}}{\omega_{c}}\right) & \vdots \\
\vdots & & \vdots \\
0 & & -\left(\frac{\omega_{n-1}}{\omega_{c}}\right)^{2} \\
& &
\end{array}\right]
$$

$$
B_{c}=\left[\frac{0}{I}\right]
$$

$$
u_{c}=\left[\begin{array}{lll}
\frac{T_{p}}{\omega_{c}^{2}}, & \frac{E_{1}}{M_{1} \ell \omega_{c}^{2}} & \ldots, \frac{E_{n-1}}{M_{n-1} l \omega_{c}^{2}}
\end{array}\right]
$$

with (Ref 5) p actuators located at $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{p}\right)$

$$
\begin{align*}
& T_{p}=-\frac{1}{J}\left[f_{1} \xi_{1}+\ldots+f_{p} \xi_{p}\right] \tag{32}\\
& E_{n}=f_{1} \phi_{z}^{n}\left(\xi_{1}\right)+f_{2} \phi_{z}^{n}\left(\xi_{2}\right)+\ldots+f_{p} \phi_{z}^{n}\left(\xi_{p}\right) \tag{33}
\end{align*}
$$

Then

Case 1: pitch +2 modes are conshde: 2 in the model with actuators located at $(-2 / 2,2 / 2,2 / 4)$

$$
A=\left[\begin{array}{l}
-3.0 \\
-3200.0 \\
-28800.0
\end{array}\right] \quad B_{c} u_{c}=\left[\begin{array}{ccc}
59.52 & -59.52 & 29.76 \\
20.0 & 20.0 & -2.0 \\
20.0 & -20.0 & 9.3
\end{array}\right]\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]
$$

The gains are selected for decoupling anu criticai damping in the decoupled modes (only rate feedbackis considered here since the uncontrolled system is already decoupled). The required control forces are given by:
$\left[\begin{array}{l}\mathrm{F}_{1} \\ \mathrm{~F}_{2} \\ \mathrm{~F}_{3}\end{array}\right]=\left[\begin{array}{ccc}-0.011 & -2.835 & -5.2757 \\ 0.017 & -2.835 & 33171 \\ 0.0602 & 0.0 & -17.5855\end{array}\right]\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3}\end{array}\right]$

The time response of picch, nondimensionalized modal amplitudes, and forces required are plotted in the following figures, (Fig. 2). As the mode number (and frequency) increase the decay time decreases. The pitch tales a relatively long tiaz to decay since its natural frequency is very low and only rate Esedback is considered here. The mazimum amplitude of the forces are of the order of newtons for this application.

Fig. 2. Decoupled Controlled Response - Ditch + Two Ilodes with Three Actuators $(-2 / 2,2 / 2,2 / 4)$.

Fig. 2. Decoupled Controlled Response - Pitch - Tro Yodes
with Three Actuators $(-\ell / 2, \ell / 2,2 / 4)$.

Fig. 2E

Fig. 2. Decoupled Controlled Respense - Pitch + Two Hodes with Three Actuators ($-2 / 2,2 / 2,2 / 4$).

Case 2: pitch $\div 4$ modes considered with actuators located at $(-l / 2,-2 / 4,0, l / 4,2 / 2)$
$A=\left[\begin{array}{ccccc}-3.0 & 0 & 0 & 0 & 0 \\ 0 & -3200.0 & 0 & 0 & 0 \\ 0 & 0 & -28800.0 & 0 & 0 . \\ 0 & 0 & 0 & -93079.50 & 0 . \\ 0 & 0 & 0 & 0 & -255331.40\end{array}\right]$

$$
\mathrm{B}_{\mathrm{c}} \mathrm{u}_{\mathrm{c}}=\left[\begin{array}{ccccc}
59.52 & 29.76 & 0.0 & -29.76 & -59.52 \\
20.0 & -1.98 & -14.0 & -1.97 & 20.0 \\
20.0 & -11.698 & 0.0 & 11.685 & -20.0 \\
20.0 & -12.437 & 14.18 & -12.37 & 20.0 \\
20.0 & -5.1266 & 0.0 & 5.01 & -20.0
\end{array}\right]\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5}
\end{array}\right]
$$

For case 2, the gains are selected using joth decoupling and an application of tive linear regulator provlem to the independent modal coordinates.

Using decoupling (pitch and the first four modes are critically damped), the control forces are given by
$\left[\begin{array}{l}f_{1} \\ f_{2} \\ f_{3} \\ f_{4} \\ f_{5}\end{array}\right]=\left[\begin{array}{ccccc}-1.199 & -1.423 & -789.03 & -7.578 & 3365.27 \\ -3.329 & 0.0 & -2183.39 & 0.0 & 9392.17 \\ -2.443 & 4.015 & -1620.70 & -21.649 & 6946.89 \\ -3.278 & 0.0 & -2200.36 & 0.0 & 9397.81 \\ -1.669 & -1.423 & -780.55 & -7.578 & 3362.45\end{array}\right]\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4} \\ \dot{x}_{5}\end{array}\right]$

The response to an assumed perturbation of 0.01 in all tne position coordinates, including pitch, is shown in Fig. 3. The maximum amplitudes of forces are of the order of hundzeds of newtons. Fig. 3, also illustrates how the initially deformed bean is straightened out under the influence of the controllers. It is seen that after 36 secs the beam is essentially straight, but continues to exhibit a pitch displacement until about 4000 secs.

Fig. 3. Decoupled Controlled Response - J=tch + Four Nocies with Eive Actuators $(-2 / 2,-2 / 4,0,2 / 4,2 / 2)$.

Fiz. 3. Decoupled Controlled Response - Pitch - Four Hodes with Five Actuators $(-2 / 2,-2 / 4,0,2 / 4,2 / 2)$

Fig. 3. Decoupled Controlled Response - Pitci + Four Modes with Five Actuators $(-2 / 2,-2 / 4,0,2 / 4,2 / 2)$

The lizear regulator problef is applied tc the system in the decoupled (modal) coordinates, where the non-dimensionalized rates are penalized by a factor of frequency squared as compared with the non-dimensionalized position coordinates. After solution of the five two Zimensional matrix Riccati equations, the actual control. Forces are given in terms of the following gain matrix.

-0.056	1.353×10^{-6}	0.0	0.0	0.0	-0.6312	-0.712	-334.52	-4.343	2332.0
$-0.1559-0.0$	0.0	0.0	0.0	-1.7527	0.0	-109.17	0.0	4696.0	
-0.1144	3.545×10^{-6}	0.0	0.0	0.0	-1.2959	2.007	-320.35	-5.022	3473.4
-0.1535	0.0	0.0	0.0	0.0	-1.7255	0.0	-1200.13	0.0	4598.3
-0.0545	0.0	0.0	0.0	0.0	-0.6142	-0.712	359.27	-4.348	1531.2

Fis̃. 4. Iinear Regulator Apolication Conirolled Response Pitch + Four Yodes with Eive Actuators $(-2 / 2,-2 / 4$, $0,2 / 4,2 / 2$).

Fig. 4. Lanear Regulator Applicacion Controlled ResponseP1Fch + Four Modes with Five Actuators ($-2 / 2,-2 i 4$, $0,2 / 4,2 / 2$)

Fig. 4G. Bean Deflection with Eime.

Fig. 4. Linear Regulatn: Application Controlled RessonsePitch + Eour sodes with Eive Actuators $(-2 / 2,-2 / 4$, $0, \ell / 4, \ell / 2$)

The response to an assumed inftial perturbation of 0.01 in all the position coordinates is shown in Fig. 4. As the rates are penalized heavily when compared to the positions, the controlled systen fre• quencies are not changed appreciably and the damping obtained in the individual modes is less than critical. The very small numbers and zeros (which are in reality $<10^{-7}$ in the second to fifth columns of the position feedback portion of the gain matrix) are due to unit weighting of the positions in the Q_{i} matrix. It can be sho: that the forces required have a maximum amplitude of the order of thousands of newtons. When compared vith Fig. 3, the maximum amplitude of the foices reouired here are approximately two orders of magnitude larger. This can be explained by the fact that the model used here includes the third and fourth higher frequency modes, and it his been assuned that all four modes and pitch were initially excited equally.

5. Conclusion

A technique for selecting control system gains based on the decoupling of the original linear system equations of motion is presented. This avoids use of modal analysis and does not require system matrices to be symmetric or skew symuetric. When the number of actuators is equal to the number of modes, a unique solution for the control gains depends on the non-singularity of a matrix baced on (modal shape functions evaluated at) actuator locations. When the number of actuators is less than the number of modes and the order of the system is high, implementation of decoupling control may be limited by the computational capacity.

The linear regulator problem can be applied to the decoupled modal coordinates only when the number of actuators is eqjal to the number of modes. Otherwise instead of solving n second order matrix Riccati equations, a $2 n x 2 n$ matrix Riccati equation has to be solved.

6. References - Chapter III

1. Outlook for Space, NASA Report SP-386, Jan. 1976.
2. Industry Workshop on Large Space Structures, NASA Contractor Report CR-2709, Contract No. NAS-1-2436, for NASA Langley Research Center, May 1976.
3. P. Santini, "Stability of Flexible Spacecrafts," Acta Astronautica, vol. 3, 1977, pp. 685-713.
4. V.K. Kumar and P.M. Bainum, "Dynamics of a Flexıble Body in Oroit," AIAA/AAS Astrodynamics Conference, Falo Alto, Calif., August 7-9, 1978, Paper No. 78-1418.
5. P.M. Balnum and f.S.S.R. Reduy, "On the Controllability of a Long Flexible Beam in Orbit," presented at Second AIAA Symposium on Dynamics and Control of Large Flexible Spacecraft, June 21-23, 1979, Blacksburg, Virginıa.
6. M.J. Balas, "Feedback Control of Flexible Systems," IEEE Trans. on Automatic Control, vol. AC-23, No. 4, August 1978, pp. 673 679.
7. B.S. Morgan Jr., "The Synthesis of Linear Multi-variable Systems by State-Variable Feedback," IEEE Trans. on Automatic Control, vol. AC-9, No. 4, October 1964, pp. 405-411.
8. L. Meirovitch, "A Modal Analysis for the Response of Linear Gyroscopic Systems," Journal of Applied Mechanics, vol. 42, No. 2, Trans. ASME, vol. 97, Series E, June 1975, pp. 446-450.
9. H.B. Hablani and S.K. Shrivastava, "A Modal Analysis for the Damped Linear Gyroscopic Systems," Journal of Applied Mechanics, vol. 44, No. 4, Trans. ASME, vo1. 99, December 1977, pp. 750-754.
10. Advanced Tech. Lab. Program for Large Space Structures, Rockwell International SD-76-SA-0210, November 1976, Appendix B, Modal Control of Flexible Spacecraft.
11. H. $\mathrm{O} \ddot{\mathrm{z}}$ and L. Meirovitch, "Optimal Control of Flexible Gyroscopic Systeris," presented at I.A.F., XXIX ${ }^{\text {th }}$ Congress, Dubrovnik, October 1-8, 1978.
12. I.S. Sckolnikoff, and R.M. Redheffer, Mathematics of Modern Physics and Engineering, McGraw Hill, New York, 1958.
13. C. Wylie, Advanced Engineering Mathematics, McGraw Hill, New York, 1960.

In Refs. 1 and 2 the control of the planar motion of a long flexble beam in orbit was studied based on the concept of distributed modal control. The control forces generaced based on this consept provide a means of controlling each system mode independently of all other modes as long as the number of modes in the system mathematical model is the same as the number of actuators. For the case where the number of modes (N) is greater chan the number of actuators (P) independent control of P modes is possible, and the response of the remaining ($N-P$) modes depends on the residual coupling due to the P actuators.

The mathematical model used in Refs. 1 and 2 is based on a three-mass discretization of the iree-free beam, with two of the masses assumed to be at the ends of the beam and the third mass at an interior point which later was selected at the center of the undeformed beam. The beam was represented by two hinged cantilever-type members consisting of the end mass connected by (assumed) massless springs which were responsible for the structural restoring forces (Fig. 1). One of the results from Refs. 1 and 2 indicates that the beam, represented by two degrees of freedom, and containing a single actuator at one end, when given an initial perturbation, will not return to the equilibrium position when the control is based on the concept of independent modal control. In the present study (Chapter II), it is clearly shown that a beam with a single actuator at one end and with pitch and two generic modes in the model can be controlled and will return to a desired undeformed alignment with the local vertical.

In an effort to resolve this apparent ambiguity, we will return to the previously developed discretized model and examine both the controllabilaty and stability of the system when $F=I<N=2$.

The linearized r.quations of motion are [Eq. (3.18) of Ref. 1 or Eq. (38) of Ref. 2]:

$$
\left[\begin{array}{ll}
a & b \tag{1}\\
b & a
\end{array}\right]\left[\begin{array}{l}
\ddot{v}_{1} \\
\ddot{v}_{2}
\end{array}\right]+\left[\begin{array}{ll}
c & 0 \\
c & c
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
F_{v_{1}} \\
F_{v_{2}}
\end{array}\right]
$$

where

$$
a=M *\left(1+\bar{m}_{0}\right) ; b=M * ; c=3 \omega_{0}^{2} M^{*}\left(2+\bar{m}_{0}\right)+k
$$

and

$$
\begin{aligned}
M^{*}= & m^{2} / \bar{M} \\
\bar{m}_{0}= & m_{0} / m \\
m= & \text { mass of each end mass } \\
m_{0}= & \text { mass of interior mass } \\
k= & \text { elastic restoring constant }\left(=3 E I / \hat{\iota}^{3}\right. \text { for assumed } \\
& \text { cantilever members) }
\end{aligned}
$$

Fig. 1. Three-Mass System Configuration

$$
\begin{aligned}
\ell & =\begin{array}{l}
\text { length of each member (one-naif the undeformed beam } \\
\\
\text { length) }
\end{array} \\
\omega_{0} & =\text { orbital angular velocity } \\
v_{1,2} & =\text { linear deflection of each end mass } \\
\mathrm{F}_{\mathrm{v}_{1,2}}= & \text { control forces due to actuators }
\end{aligned}
$$

Eq. (2) can be rewritten as

$$
\left[\begin{array}{l}
\ddot{v}_{1} \tag{2}\\
\ddot{v}_{2}
\end{array}\right]=-\frac{1}{a^{2}-b^{2}}\left[\begin{array}{rr}
a c & -b c \\
-b c & a c
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]+\frac{1}{a^{2}-b^{2}}\left[\begin{array}{rr}
a & -b \\
-b & a
\end{array}\right]\left[\begin{array}{l}
F_{v_{1}} \\
F_{v_{2}}
\end{array}\right]
$$

If

$$
\begin{array}{ll}
v_{1}=x_{1} & \dot{v}_{1}=x_{3}=\dot{x}_{1} \\
v_{2}=x_{2} & \dot{v}_{2}=x_{4}=\dot{x}_{2}
\end{array}
$$

then Eq. (2) can be written in standard state space form as:

$$
\left[\begin{array}{l}
\dot{x}_{1} \tag{3}\\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\frac{-a c}{a^{2}-b^{2}} & \frac{b c}{a^{2}-b^{2}} & 0 & 0 \\
\frac{i c}{a^{2}-b^{2}} & \frac{-a c}{a^{2}-b^{2}} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\frac{1}{a^{2}-b^{2}}\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
a & -b \\
-b & a
\end{array}\right]\left[\begin{array}{l}
F_{v_{1}} \\
F_{v_{2}}
\end{array}\right]
$$

Eq. (3) Is nov written in the form:

$$
\dot{x}=\left[\begin{array}{rr}
0 & I \tag{4}\\
-A & 0
\end{array}\right] \dot{x}+\left[\begin{array}{l}
0 \\
B
\end{array}\right] \mathrm{f}
$$

so that according to the controllability theorem, the system represented by Eq. (4) is controllable if and only if the controllability matrix, C, associated with the pair of reduced state and control matrices, [A,B], is controllable. _ In this case

$$
C=\frac{1}{a^{2}-b^{2}}\left[\begin{array}{rrrr}
a & -b & 1 & \frac{-c\left(a^{2}+b^{2}\right)}{a^{2}-b^{2}} \tag{5}\\
-b & a & \frac{2 a b c}{a^{2}+b^{2}} \\
& & \frac{2 b c}{a^{2}-b^{2}} & \frac{-c\left(a^{2}+b^{2}\right)}{a^{2}-b^{2}}
\end{array}\right]
$$

Since det $\left[\begin{array}{rr}a & -b \\ -b & a\end{array}\right] \neq 0$, in general, C has rank -2 and the system (2) is controllable.

If only one actuator is assumed to be present (i.e. $\mathrm{F}_{\mathrm{v}_{2}}=0$), then Eq. (3) can be written

$$
\left[\begin{array}{l}
\dot{x}_{1} \tag{6}\\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\frac{-a c}{a^{2}-b^{2}} & \frac{b c}{a^{2}-b^{2}} & 0 & 0 \\
\frac{b c}{a^{2}-b^{2}} & \frac{-a c}{a^{2}-b^{2}} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\frac{1}{a^{2}-b^{2}}\left[\begin{array}{c}
0 \\
0 \\
a \\
-b
\end{array}\right]{ }^{F_{1}}
$$

The reduced order controllability matrix is:

$$
c=\left[\begin{array}{lll}
a /\left(a^{2}-b^{2}\right) & -c\left(a^{2}+b^{2}\right) /\left(a^{2}-b^{2}\right)^{2} \\
-b /\left(a^{2}-b^{2}\right) & 2 a b c /\left(a^{2}-b^{2}\right)^{2}
\end{array}\right]
$$

and its determinant,

$$
\text { det } C=b c /\left(a^{2}-b^{2}\right)^{2} \neq 0 \text {, since in general, } a \neq b
$$

Thus, the system is controllable with a single actuator present.
The stability of system (6) will now be examined using the particular control law used in Refs. 1 and 2. The linear equations of motion (1) or (2) can be transformed into the modal coordinates, q_{1} a.d q_{2}, and for the case where only one actuator is present have the form: ${ }^{2}$

$$
\begin{align*}
& \ddot{q}_{1}+\lambda_{1} q_{1}=u_{1} \tag{7}\\
& \ddot{q}_{2}+\lambda_{2} q_{2}=[(a+b) /(a-b)] u_{1}=g u_{1} \tag{8}
\end{align*}
$$

where

$$
\begin{array}{ll}
\lambda_{1}=c /(a+b) & \lambda_{2}=c /(a-b) \\
\text { and } \quad v_{1}=q_{1}+q_{2} & v_{2}=q_{1}-q_{2}
\end{array}
$$

Following Refs. 1 and 2, in accordanse wath the concept of independent modal control, the control in the modal coordinates was selected as

$$
\begin{equation*}
u_{1}=-f_{1} q_{1}-f_{2} \dot{q}_{1} \tag{9}
\end{equation*}
$$

Then Eqs. (7) and (8) can be written as:

$$
\begin{align*}
& \ddot{q}_{1}+f_{2} \dot{q}_{1}+\left(f_{1}+\lambda_{1}\right) q_{1}=0 \tag{10}\\
& g\left(f_{2} \dot{q}_{1}+f_{1} q_{1}\right)+\ddot{q}_{2}+\lambda_{2} q_{2}=0 \tag{11}
\end{align*}
$$

The characteristic equation for the system described by Eqs. (10) and (11) can be developed with the result:

$$
\begin{equation*}
\left(s^{2}+\lambda_{2}\right)\left(s^{2}+f_{2} s+f_{1} \lambda_{1}\right)=0 \tag{12}
\end{equation*}
$$

An undamped mode remains at frequency $\sqrt{\lambda_{2}}$ and is not affected by the feedback gains, f_{1} and f_{2}. After the control removes the initsal perturbation in q_{1}, in generai, the system will continue to oscillate at the second (uncontrolled) modal frequency. The system is unstable about $q_{1}=q_{2}=0$ in the (strong) sense of Routh-Hurwitz where the control 1aw for the single actuator has the form of Eq. (9). An example is illustrated by Fig. 9 of Ref. 2 for this case whe=e $f_{1}=f_{2}=1.0$, and demonstrates the basic phenomenon of control spillover.

Instead of selecting the control law based on the independent control concept, suppose that a coupled rate feedback control law is employed having the form:

$$
\begin{equation*}
u_{1}=-k_{1} \dot{q}_{1}-k_{2} \dot{q}_{2} \tag{13}
\end{equation*}
$$

Eqs. (7) and (8) can then be expressed as:

$$
\begin{align*}
& \ddot{q}_{1}+k_{1} \dot{q}_{1}+\lambda_{1} q_{1}+k_{2} \dot{q}_{2}=0 \tag{14}\\
& g K_{1} \dot{q}_{1}+\ddot{q}_{2}+g K_{2} \dot{q}_{2}+\lambda_{2} q_{2}=0 \tag{15}
\end{align*}
$$

with the assoclated characteristic equation

$$
\begin{equation*}
s^{4}+\left(K_{1}+g K_{2}\right) s^{3}+\left(\lambda_{1}+\lambda_{2}\right) s^{2}+\left(\lambda_{2} K_{1}+\lambda_{1} g K_{2}\right) s+\lambda_{1} \lambda_{2}=0 \tag{16}
\end{equation*}
$$

If the rate feedback gains, K_{1} and K_{2}, are selected to be positive, the system will be stable about $q_{1}=q_{2}=0$ according to the Routh Hurwitz criteria, noting that $g=(a+b) /(a-b)>U$.

Numerical Example

Following Refs. 1 and 2, the total mass is selected to be 1000 kg , equally divided between the two end masses and central mass, m_{0}.
Thus,

$$
\begin{aligned}
\overline{\mathrm{M}} & =1000 \mathrm{~kg} \\
\mathrm{~m} & =\overline{\mathrm{M}} / 3=\mathrm{m}_{0} \\
\overline{\mathrm{~m}}_{0} & =\mathrm{m}_{0} / \mathrm{m}=1
\end{aligned}
$$

$$
\begin{aligned}
& N *=m^{2} / \bar{M}=111.11 \mathrm{~kg} \\
& a= M^{*}\left(1+\bar{m}_{0}\right)=222.22 \mathrm{~kg} \\
& b= M *=111.11 \mathrm{~kg} \\
& k=3 E I / \ell^{3}= 0.18497 \mathrm{~N} / \mathrm{m} \text { for a cylindrical } \\
& \quad \begin{aligned}
& \text { wrought aluminum tubular beam, } 100 \mathrm{~m} . \\
& \text { long }(L=2 \ell)
\end{aligned} \\
& \omega_{0}= 1.115 \times 10^{-3} \mathrm{rad} / \mathrm{sec} \\
& c=0.1862522
\end{aligned}
$$

If the feedback rate gains are selected as
$K_{1}=0.4728$
$K_{2}=0.4000$
(such as to produce less than critical damping in each of the two normal modes) then the roots of the characteristic equation (16) as sclved by a computerized polynomial root - finding routine are:

$$
\begin{aligned}
& -6.4019 \times 10^{-4} \\
& -8.58139 \times 10^{-4} \pm j 2.952816 \times 10^{-2} \\
& -1.670404
\end{aligned}
$$

verifying the stabili-g of the system.

REFERENCES - Chapter IV

1. Bainum, Peter M. and Sellappan, R., "The Dynamics and Control of Large Flexible Space Structures - Part A: Discrete Model and Modal Control," Final Report, NASA Grant: NSG - 1414, Department of Mechanical Engineering, Howard University, May 1978.
2. Sellappan, R. and Bainum, Peter M., "Modal Control of the Planar Motion of a Long Flexible Beam in Orbit," XXIX Congress, International Astronautical Federation, October 1-8, 1978, Paper No. 78-102.

V. General Conclusions and Recommendations

A model is developed for predicting the dynamics of a long, flexible free-free beam in orbit under the influence of control devices which are considered to act at specific points along the beam. Two classes of theorems are applied to the system model to establish necessary and sufficient conditions for controllability depending on whether the system possesses non-repeated or repeated eigenvalues. It is observed that with a proper selection of the location and number of actuators along the beam, a lesser number of actuators than the number of modes in the model can control and stabilize the system.

After establishing the controllability of the system, control gains are selected using the following two criteria: (i) decoupling of the linearized system equations with app:opriate state variable feedback; and (1i) applying the linear regulator problem to the modal coordinates, and thus, selecting gains by solving groups of "n" two by two matrix Ricrati equations.

The decoupling technique avoids modal analysis and is computationally simple when the number of actuators is equal to the number of modes. However gain selection is possible even when the number of actuators is different from the number of modes. The linear regulator application described in this report depends on an a priori modal analysis and the number of actuators must be equal to the number of modes. When the number of actuators is not equal to the number of modes the general linear regulator problem can still be applied and a $2 n \times 2 n$ matrix Riccati equation has to be solved for a system containing n modes.

The independent modal control concept used earlier for a long flexible beam modelled by three discrete masses is reviewed for stability when the number of actuators is less than the number of modes. For this case, it is seen that even though the system is controllable, it is not stable about the zero state vector (gives rise to a simple example of control spillover). It is observed that a proper control law not based on modal decoupling ensures stability of all the modes.

In the present study control and observation spillover are not directly considered and all states are assumed to be available (noise free). Selection of modes for the mathematical model is done on an arbitrary basis. Only point actuators are modelled.

As an extension of this study, control galn selection usin; pole allocation can be investigated. :odel reduction using energy cr shape of the structure as a criteria may be studied. Distributed actuators can also be modelled and their effectiveness can be compared with that of the point actuators. Control and observation spillover can be taken into account in designing state estimators and reduced order controller designs.

Appendix A

Evaluation of Modal Mass $\left(M_{n}\right)$:

The shape function $\left[\phi_{r}(x)\right]$ of a free-free beam satisfy

$$
\begin{equation*}
\phi_{r}^{1 \nabla}={\frac{1}{4} \phi_{r},} \tag{A-1}
\end{equation*}
$$

(where $\phi_{r}^{I V}=\frac{d^{4} \phi_{r}}{d X^{4}}$ and a similar notation denotes other ordered derivatives)
with boundary conditions

$$
\begin{align*}
& \phi_{I}^{\prime \prime}(0)=\phi_{I}^{\prime \prime \prime}(0) \tag{A-2}\\
& \phi_{I}^{\prime \prime}(\ell)=\phi_{I}^{\prime \prime \prime}(\ell)
\end{align*}
$$

From consideration of Eqs. (A-1) and (A-2), the shape function is given by

$$
\phi_{r}(X)=\cosh \lambda_{r} X+\cos \lambda_{r} X-\sigma_{r}\left(\sinh \lambda_{r} X+\sin \lambda_{r X}\right)^{(A-3)}
$$

where λ_{r} is given by the solution of the transcendental equation

$$
\begin{equation*}
\cos \lambda_{r} \ell \cosh \lambda_{r}^{\ell-1}=0 \tag{A-4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{r}=\frac{\cosh \lambda_{r} \ell-\cos \lambda_{r} \ell}{\sinh \lambda_{r} \ell-\sin \lambda_{r} \ell} \tag{A-5}
\end{equation*}
$$

We have for two different shape functions ϕ_{r}, ϕ_{S} corresponding to
λ_{r} and λ_{S}

$$
\begin{align*}
& \phi_{r}^{I V}=\lambda_{r}^{4} \phi_{r} \\
& \phi_{S}^{I V}=\lambda_{S}^{4} \phi_{S} \tag{A-7}
\end{align*}
$$

$$
(h-\bar{\sigma})
$$

Eqs. ($\mathrm{A}-6$) and ($\mathrm{A}-7$) can be combined as

$$
\begin{equation*}
\phi_{r} \phi_{S}\left(\lambda_{r}^{4}-\lambda_{S}^{4}\right)=\phi_{S} \phi_{r}^{I V}-\phi_{r} \phi_{S}^{I V} \tag{A-8}
\end{equation*}
$$

Integrating (A-8) by parts,

$$
\begin{gather*}
\int_{0}^{\ell} \phi_{r} \phi_{S} d x=\frac{1}{\left(\lambda_{r}^{4}-\lambda_{S}^{4}\right)} \int_{0}^{\ell}\left[\phi_{S} \phi_{r}^{1 V}-\phi_{r} \phi_{S}^{1 V}\right] d \lambda \\
=\frac{1}{\left(\overline{\lambda_{r}^{4}-\lambda_{s}^{4}}\right)}\left[\phi_{S} \phi_{r}^{\prime \prime \prime}-\phi_{S}^{\prime} \phi_{r}^{\prime \prime \prime}-\phi_{r} \phi_{S}^{\prime \prime \prime}\right. \\
 \tag{A-9}\\
\left.+\phi_{r}^{\prime} \phi_{S}^{\prime \prime \prime}\right]_{0}^{\ell}=0 \text { for } r \neq s
\end{gather*}
$$

When $r=s=n$ the above integral is defined as modal mass $\left(M_{n}\right)$ per
unit density per length:

$$
\begin{align*}
M_{n} / \rho & =\int_{0}^{\ell} \phi_{n}^{2} d x \tag{A-10}\\
& =\frac{1}{\lambda_{n}^{4}} \int_{0}^{\ell} \phi_{n} \phi_{n}^{1 V} \mathrm{~d} x \\
& =\frac{1}{\lambda_{n}^{4}}\left[\left.\phi_{n} \phi_{n}^{\prime \prime \prime}\right|_{0} ^{\ell}-\int_{0}^{\ell} \phi_{n}^{\prime} \phi_{n}^{\prime \prime \prime} d x\right] \\
& =-\frac{1}{\lambda_{n}^{4}} \int_{0}^{\ell} \phi_{n}^{\prime} \phi_{n}^{\prime \prime \prime} d x \tag{A-11}\\
& =-\frac{1}{\lambda_{n}^{4}}\left[\left.\phi_{n}^{\prime} \phi_{n}^{\prime \prime}\right|_{0} ^{\ell}-\delta_{0}^{\ell} \phi_{n}^{\prime \prime} \phi_{n}^{\prime \prime} \mathrm{d} x\right] \\
& =\frac{1}{\lambda_{n}^{4}} \int_{\nu}^{\ell} \phi_{n}^{\prime \prime 2} \mathrm{~d} x \tag{A-12}
\end{align*}
$$

So

$$
\begin{equation*}
4 M_{n}=\int_{0}^{\ell}\left[\phi_{n}^{2}+\frac{1}{\lambda_{n}^{4}}\left(\phi_{n}^{\prime \prime 2}-2 \phi_{n}^{\prime} \phi_{n}^{\prime \prime \prime}\right)\right] d x \tag{A-13}
\end{equation*}
$$

After substitution for ϕ_{n} and its derıvatives into $[q .(A-13)$.

$$
M_{n}=\rho \int_{0}^{\ell} d x=\rho \ell
$$

References:

1. R.E.D. Bishop and D.C. Johnson, The Mechanics of Vibration, Cambridge University Press, 1960, pp. 323.
2. Prıvate discussion with Mark J. Balas.

Appendix B

The program described in this appendix solves the equations of the form

$$
\begin{equation*}
\dot{x}=A X+B U \tag{B-1}
\end{equation*}
$$

where
X is an n dimensional state vector
A is an nxn matrix
B is an nxm matriA
U is a m:l control vector.

U is obtanned using state variable feedback
i.e. $U=G X$
using ($B-2$), ($B-1$) can be written as

$$
\dot{X}=(A+B G) x
$$

One can either give ($A+B G$) as a single matrix to the program or A, B, G as separate matrices. The solution is obtained using the state transition mairix technique. The plotting 13 incorperated in the progra using the separare computer algorithm REDOK-PLOT (see program listing which follows).
HOWARD UNIVERSITY -- SCHCOL OF ENGINEERING -- .
*
6/5/79 15:22:17
!JOB [DEAD IV AT 15:20:531 REOOK
!FORT/A/A/E/P/S FORT.LS/L
ILISTING

```

```

 DIVEVSION R(10,10),G(10,10),F(10,10)
 COYMON/REDCY!/P(10,10,10),NMC(10), ALPHA(10),RETA(10)
 OIMENSION A (10,10),ETGR(10),EIGI(10),C(11),AINV(10,10),NAME(5)
 C.IMEASION AK(10,10),U(10),DUMMY(10,105),Z(105),FORCE(5,105)
 DIMENSIDN X (10), YI(10)
 CALL IVOUT (5,8)
 113 WRITE(\&,1)
1 FORMAT(SX,'A MATRIX IN THE ERUN. }X=AX+RU'
C N=DIMEVSION OF 'A' MATRIX,NP=COLUMVS OF 'S. NATRIX
r. IF NPCP=1 ENUATION IS ' }X=AX* AND NPCP=0 IF X=(A+RG)X*
C CIF NPCD=1, R GND G MATRICES NEEO NOT BF GIVEN
READ(5,2) N,NP,NPCP
FORMAT(3I?)
WRITE(\Omega.3) N,NP
3 FORMATPZX,' DIMENSION OF A=',IZ,5X, 'COLUNNS OF H=',I2)
C QEADING A mATRIY POMwISE
OO \& I=1,N
READ(5,5) (A(I,J),J=1,N)
5 FORWAT(RFIC.O)
a WRITE(R,S) (A(I,J),J=1,N)
6 FORMAT(ZX,!O(FIO.U.EX))
C READING R MATRIX ROW'NISE
IF(NPCP.GT.O) GO:O 1234
007 I=!N
REMO(5,5) (B(I,J),J=1,NP)
7 MRITE(3,6) (B(I,J),J=1,NP)
C READIVG G MATIX OF U=GX ,RDNNISE
DO \& I= 1,NP
READ:5,5) (G(I,J),J=1,N) -
WRITE(E,6) (G(I,J),J=1,N)
DO Q I=1,N
DG 9 J=1,N
SUM=0.0
00 100 4=1,ND
SUM=SUM+G(I,M)*G(M,J)
F(I,.u)=S!\mp@code{M}
DO 11 I=1,N
YPITE(9,6) ir(I,J),J=!,id)
0012 I=1,v
On 12 J=1,N
-(I,J)=F(I,J)+\Delta(I,J)
ARITE(5.138)
13. FRQMAT(SX,*MATRIX A=A FRC WHEFE |=CX ')
B-2

```
```

 DO 129 I=1,N
 20 WRITE(S,6) (A(I,J),J=1,N)
RASIC MATRIX PROGRGMVE
234 CONTINUE
NAME OF PRNGRQMMEASIN 'A. FORMAT
REAO(5,27^1) (NAME(I),I=1,5)
1001 FOR MAT(SS')
: KEEP A BLANK CARD TO GET ALL OHTIONS DF THE PRCGRAMME
: IDET=0 DRINTS DETER'AINANT VALUE---
INV=0 PRINTS INVERSE OF A MATRIX
NRM=0 POINTS RESNLVENT MATRIY
ICP=0 PRIVTS CI mRCTERISTIC FOLYNOM*AL
IEIG=n PRINTS EIGEN VALUEC
ISTM=0 PRINTS STATE TRANSITION MATRIX
IF ABOVE PARAMETERD ARE NOT ZERO THEN CORRESPONOING VALUES ADE NOT
REAO(5,201 3) IDET,INV,NRM,ICP,IEIG,ESTM
WRITE(R,20\cap8)
'008 FORMAT(IHI,FX, ' RASIC MATRIX PROGRAM*)
WRITE(R,2009) (NAME(I),I=1,5)
200! FORUAT(6X.' PRORLEM (NDENTIFICATION:'.5X,544)
WRITE(R,2012)
'012 FORNAT(1H0,45(1H*))
IF(IDET.NE.O) GOTC 14
D=DET (A,N)
WRITE(2,2010)
.010 FORUAT(IH0,5X, ' DETERNIMANT OF THE MATRIX*)
WRITE(R,200 3) D
1003 FURMAT(IPOE20.7)
a IF(IV V.NE.O) GOTO 15
WRITE(R,2011)
'01: FORUAT(1HO,5X, THE INVERSE OF MATPIX ')
CALL SIMEQ(A,C,N,AINV,C,IERR)
IF(IERR.EG.O) GOTO 15
DO 208 I=1,N
:08 WRITE(8,2003) (SINV(I,J),J=1,N)
. }5\mathrm{ CALL CHREO(A,N,C,NRM)
CALL DROOT(IG,C,EIGR,EIGI,+1)
IF(ICP.NE.O) GOTO 308
WRITE(\Omega,2012)
WRITE(8,2005)
!005
FORHATCIHO,5X, THE CHARCTERSTIC POLYNOMIAL-IN ASCENDING PONERR
1 OF S',
NN=N+1
AKITE(2,200 }) (C(I),I=I,NN)
30% IFRIEIGNE.O GOTO 35
WPITE(8.2012)
NRITE(R,2006)
2006 FORMAT(1H0,5X, EIGEN VALUES OF A *ATRIX*)
?007 FORMAT(QX,'PEAL PART',8X,'IWAGINARY DART')
O13 FOPMAT(GI!)
WRITE(5,2007)
00 15 I=1,N
6 NRITE(\&,2\#0 3) ETGP(I),EIGI(I)
35 IF(IST*,NE.0) GOTO 25
CALL STAST(N,A,EIGR,EIGI,ISTM)

25 CONTINUE

C N=DIUENSION OF A MATRIX
C M=CCLINMNS OF B MATRIX
C NC=DIMENSION OF FEEDBACK STATES
C NWRITE=O IF PRIMIING IS NEEDED
C NPLOT=0 IF PLCTTING IS NEEDED
C NSEL.CT $=0$ AL WAYS
C T=INITIAL TIME
C TMAX=FINAL TIME
C XUIN=UINIMUM O- SUM OF STATES
1875 FORO 5,1575) N,M,NC,NWRITE,NPLOT,NSELCT
1875 FORUAT(2I2,I4,3I1)
READiS,20)(XI(I),I=I,N;
REAOC(5, 己̃) T, TMAX,H,XMIN
IF (NSELCT.GT.O) GOTO 1724
REAO (5,20) (ALPHA(I), BETA(I), I=1,N)
1724 DO $1264 \mathrm{I}=1$, M
1268 READ (5,20) (AK (I;J), J=I;N)
WRITE $(R, 40)$ (XI(I), $I=1, N$)
WRITE (8.40) T,TMAX,H,XMIN
HRITE(8,40) (ALPHA(I), BETA(I),I=1,N)
WRITE(8.1?70)
$001269 \mathrm{~J}=1 \mathrm{~N}$
1269 WRITE(R,40) (AK (I,J),I=1,N)
1270 FORMAT(2X, ${ }^{\circ} K$ MATRIX WRITTEN COLUMN WISE')
IF(ASELCT.GT.0) GOTO 1725
READ (5,80) (NMC(I), I=1, N)
$0030 I=1, N$
$0030 \quad \mathrm{~J}=1 \mathrm{~N}$
$30 \operatorname{READ}(5,20)(P(1, J, K), K=1,4)$
40 FORMAT(2X.1P6E20.7)
80 FOD: 4 (30I1)
20 FOMAT(BFio.0)
1725 20 172力 NMK=1,N DO 1726 NML=1,N
1726 WPITE (8,40) (P(NMK,NML,NUM), N4N $=1, N$) NMin=1
$50 \quad 0010 \quad \mathrm{~J}=1 . \mathrm{N}$
$x(J)=0.0$
$00101 \mathrm{I}=1 . \mathrm{N}$
$A B P=A L P H A(I) * T$

- IF(AEP.GT. 100.0.OR.ABP.LT.-100.0) GOTO 101
DO $102 \mathrm{k}=1 . \mathrm{N}$
IF (NGC(I).ED.0) GOTO 13
$x(J)=x(J)+P(I, J, K) * E X P(A L P H A(I) * T) * \operatorname{Cos}(B E T A(I) * T) * X I(K)$
goto 102
$\begin{array}{ll}13 & X(J)=X(J)+P(I, J, K) * E X P(A L P H A(I) * T) * S I N(R E T A(I) * T) * X I(K) \\ 102 & \text { CONTINUE }\end{array}$
101 continue
10 covtive
$001271 \quad I=1,4$
$u(I)=0.0$
$001271 \mathrm{~J}=1, \mathrm{~N}$
$1271 \quad U(I)=x(J) * A K(I, J)+U(I)$
DO $1371 \mathrm{~K}=1$,


```
1371 FORCE (K,NMN)=U(K,
        IF(N:NRITE.GT.O) GOTO 1400
- WRITE(8,103)T,(X(J),J=1;N),(U(I)-I=1,M)
103 FCRMAT(2X,IPEE16.5)
1400 CONTINUE
    DO 1272 I=&,N
1272 DUMMY(I,NMN)=X(I)
        SUM=0.0
    \cdots-.DO 70 MM=:,N
70 SUM=SUM+X(MM)**2
        T=T+H
        NMN=N&N+1
        IF(SUM.LT,XMIN.OR.T.GT.TMAX) GOTO bO
        GOTO 50
    60 CONTINUE
    CALL FOPEN(1,"DPO:REDOK")
        WRITE RIANDY(I)N,NC,M
        ARITE SINARY(1) ((DUMNY(I,J),J=1,NC),I=1,N)
        WRITE RINAPY(I) ((FQREE(I,J),J=1,NC),I=1,M)
        CALL FCLOSE(1)
        GOTO 11 3
    1420 STOP
        END
```



```
    SUBROUTI'NE CHREG(A,N,C,NPN)
    C THIS SIJRFJUTINE FINOS THE COEFFICIENTS OF THE CHARACTERISTIC POLY
    C NOMIAL USING THE LEVERRIER ALGORITHM
        COUMON ZED(10,10x,10)
        DIMENSION A(10,10),C(11),ATEMP(10,10),PROD(10,10) -
    1000 FORMAT(1H0,5X. 'THE MATRIX CCEFFICENTS OF THE NUMERATOR-OF THE RESO-
        ILVENT MATRIX ')
    1001 FORMAT(1HO,5X.'TME MATRIX COEFFICENTS OF S'.I1/J
    10n2 FORMAS(1PGE20.7)
    1003 FORMAT(IHO,U5(1H*))
    C REPLACING THR DATA CARD DATA ATEMP/100*0.0/
        OD 1315 I=1.1C
        00 1315 J=!.10
1315 ATEMP(I,;\cdots0 n
        CALL CHM :-:.,N,CJ
        0065 I=1.
    65 ATEMP(I,: : Ј
    70 OO 80 I=1,N
        00 80 J=1.N
80 ZED(N,I,J)=ATEMP(I,J)
        IF(NRM.NE.O) GOTO 71
        WRITE(R,100 3)
        vRITE(R,1000)
        M=N}\cdot
        WRITE(R,1001) M
        DO 35 I=1,N
    35 WRITE(8,1CO2) (ATEMP(II,.J)YYJ=1,N)
SYNTAX IN CRROR, PU*CTUATION 'IISSING, OR IDENTIFIEP OF WRONG VARIETY=-m...-
71 DO &n I=1.N
    DO aO J=1,N
40 ATEMP(I,J)=A(I,J)
    DO 10 I=1,N
    NNN=N=I
    IF(I.EQ.1) GOTO S5
    IF(VRM.NE.0) GOTO 60
    WRITE(B,1001) NNN
    DO 45 J=1,N
45 WRITE(8,10N2) (ATEMP(J,K),K=1,N)
60 NP=NNN+1
    DO 90 II=I,N
    00 90 J=1,N
    ZED(NP,II,J)=ATEMP(II,J)
    DO 15 J=1,N
    00 15 k=1,N
    PQOD(J,K)=0.0
    DO 15 L=1,N
    PROD(J,K)=PROD(J,K)+(A(J,L)*ATEWP(L,K))
    OO 1 3 J=1.N
    00 1 3 k=1,N
    \triangleTEWP(J,K)=PPDD(J,K)
    no 10 J=1, 人,
    \triangleTEMP(I,J)=ATENP(J,J)+C(N-I+I)
    PETUQN
    END
```

```
    SUBROUTINE CHMPQA(A,N,C)
    DIMENSION J(11),C(11),B(10,10), \(A(10,10), D(300)\)
    \(N N=N+1\)
    \(\begin{array}{ll}D O & 20 \quad I=1, N N \quad \text { as } \\ C(I)=0=0\end{array}\)
    \(C(I)=0.0\)
    \(C(N N)=1.0\)
        DO \(14 \mathrm{M}=1 . \mathrm{N}\)
        \(K=0\)
        \(L=1\)
        \(J(1)=1\)
        GOTO 2
    \(-J(L)=J(L)+1\)
        IF (L-M) 3.5,50
    \(3 \quad M M=M-1\)
        DO \(\& I=L, M M\)
        \(I I=I+I\)
        \(J(I I)=J(I)+I\)
        DO \(10 \mathrm{I}=1, \mathrm{M}\)
        \(0010 K K=1, M\)
        NR=J (I)
        \(N C=J(K K)\)
    . \(0 \quad B(I, K K)=A(N Q, N C)\)
        \(K=K+1\)
        \(D(K)=D E T(B, M)\)
        DO O I \(=1, M\)
        \(L=M-I+1\)
        IF \((J(L)-(N-H+L)) 1,6,50\)
        CONTIN UE
        \(M 1=N-M+1\)
        DO \(14 \mathrm{I}=1, \mathrm{~K}\)
        \(14 C(M 1)=C(41)+D(I) *(-1.0) * * M\)
        RETURN
        50 WRITE ( 8,2000\()\)
? 000 FORUAT \(1 H 0,5 X\). ERRQR IN CHREQA ' '
        RETURN
        - END -
```

```
FUNCTION DET(A,KC)
this function sugprogram finds the oeterminant of a matrix USING DIAGONALISATION PROCEDURE DIMENSIDN \(A(10,10), B(10,10)\) IREV \(=0\)
\(0011=1, K C\)
DO \(1 \mathrm{~J}=1, \mathrm{KC}\)
\(B(I, J)=A(I, J)\)
DO \(20 \mathrm{I}=1 . \mathrm{KC}\)
\(K=I\)
IF ( \(B(K, I)\) ) \(10,11,10\)
\(k=k+1\)
IF (K-KC) 9,9.51
IF(I-K) 12.14.51
DO \(13 M=1, K C-\quad \therefore\)
TEMP \(=8(I, M)\)
\(B(I, M)=B(K, M)\)
\(B(K ; M)=T E N Q-\)
IREV \(=\) IREV +1
1 II=I+1
IF(II.GT.KC) GOTO 20
DO \(17 \mathrm{M}=\mathrm{II}, \mathrm{KC}\)
1 IF \(1\left(\begin{array}{l}(M, I)) 10,17,19\end{array}\right.\)
1 TEMP=A(M,I)/B(I,I)
DO \(16 \mathrm{~N}=\mathrm{I}, \mathrm{KC}\)
, \(\quad B(M, N)=B(M, N)-B(I, N) \star T E M P\)
; CONTINUE
, CONTINUE
DET=1.
DO \(2 I=1, K C\)
\(D E T=D E T * E(I, I)\)
DET=(-1)**IREV*DET
RETURN
1 DET=0.0
END
```

```
C....+く---\infty-m-m-m-m-m-m-\infty--- SORTRAN STATEMENT
SUEROUTINE PROOT(N,A,U,V,IR)
C THIS SUQROUTINE USES A MDDIFIEO BARSTON METHND TO FIND THE QOOTS
C OF A POLYNOMIAL.
    DIMENSION A(20),U(20),V(20),H(21),B(21),C(21).
        IREV = IR
        NC=N+1
        OO 1 I=I,NC
        H(I)=A(I)
        P=0.0
        Q=0.
        R=0.
        IF(H(1)) 4,2,4
        NC=NC-1
        V(NC)=0.
        U(NC)=0.
        OO 1002 I= 1,N:C
    1002 H(I)=H(I+1)
        GOTO 3
    4 IF(NC-1) 5,100,5
    5 IF(NC-2) 7,6,7
    6 R=-H(1)/H(2)
        GOTO 50
    7 IF(NC-3) 9,8,9
    8 P=H(2)/H(3)
        Q=H(1)/H(3)
        GOTO 70
9 IF(ABS(H(NC-1)/H(NC))-ABS(H(2)/H(1))) 10,19,19
10 IREV=-IREV
    u=NC/2
    00 11 I=1."
    NL=NC-I+1
    F=H(NL)
    H(NL)=H(I)
    H(I)=F
    IF(0) 13,12,13
12 P=0.
    GOTO 15
    13 P=P/O
    Q=1.17
15 IF(R) 16,19,16
16 R=1.1R
19 E=5.5-10
        B(NC)=H(NC)
        C(NC)=H(NC)
        B(NC+1)=0.
        C(NC+1)=0.
        NP=NC-1
    20 nO 40 J=1,1000
        00 2! I1=1,NP
        I=リC-II
        F(I)=H(I)+R*R(I+I)
    21C(I)=5(1)+R*C(I+1)
        IF(ARS(Q(1)/H(1))-E) 50,50.24
        IF(C(2)) 23,22,23
```

22 R=R+1
GOTO }3
R=R-B(1)/C(2)-
23
I=NC-II
B(I)=H(I)-P*B(I+Ll-Q*B(I+C)
C(I)=B(I)-P*C(I+1)-Q*C(I+2)
IF:H(2)) 32,31,32
IF(ABS(B(2)/H(1))-E) 33,33,54
32 IF(ARS(B(2)/H(2))-E) 33,33.34
33 IF(ABS(B(1)/H(1))-E) 70,70.34
34 CBAR=C(2)-5(2)
D=C(3)**2-CBAR*C(4)
IF(D) 36,35,36
P=P-2
O=Q*(0+1.)
GOTO 49
P=P+(B(2)*C(3)-B(1)*C(4))/0
O=O+(-R(2)*CAAR+B(1)*C(3))/D
49 CONTINUE
E=E*10.
GOTO 20
NC=NC-1
V(NC)=0.
IC(IREV) 51,52,52
U(NC)=1./R
GOTO 53
U(NC)=Q
DO 54 I=1,NC
H(I)=S(I+1)
GOTO a
NC=NR,-2
IF(IREV) 71.72.72
AP=1./O
PP=O/(Q*2.0)
GOTO 73
QP=Q
FP=P/己.
73 F=(PP)**2-NP-
IF(F) 74,75,75
74U(NC+1)=-PP
U(NC)=-PD
V(NC+1)=SORT (-F)
V(NC)=-V(NC+1)
GOTO }7
IF(PP) R1,80,81
U(NC+1)=-SGRT(F)
GOTO 82
U(NC+1)=-(PP/AGS(PP))*(ABS(PP)+SQRT(F))
CONTINUE
V(NC+1)=0.
U(NC)=ЭP/U(NC+1)
V(NC)=0.
OO 77 I=1,NC
76

```
        B-10

goto 4
00 RETURN
ENO
... --- .



SUBROUTINE STMST(N,A,EIGR,EIGT,IKNOW)
THIS SURROUTINE DETERMINES THE STATE TRANSITON MATRIX USING SYLVESTER'S EXPANSION THEOREM COMMON CHI (10,10,10)
COMMON/REDOYI/P \(\left(10_{8} 10,10\right), \operatorname{NHC}(10), \operatorname{ALPHA}(10)\), RETA \((10)\)
OIMENSION \(A(10,10)\), EIGR(10), EIGI 10\()\), SPS \((10,10)\)
COMPLEX CA(10,10),CAI(10,10),CAZ(10,10),TCA(10,10),DENOM(10),CEIG(
110)
\(I M N=1\)
FORMAT(THO.SX, "THE ELEMENTS OF THE STATE TRASIT:, IPE13.6. \({ }^{\circ}\) TACOS (* 11PEI3.6.')T')
302 FORMAT(IP6E20.7)

IF(IKNOW.NE.O) GOTO BOO
WRITE (R,1005)
DO \(10 \mathrm{~K}=1 . \mathrm{N}\)
CEIG(K) \(=\mathrm{CMPLX}_{\mathrm{MP}}(E \operatorname{IGR}(K)\), EIGI (K))
DO \(10 \mathrm{~L}=\mathrm{I}\), N
\(C A(K, L)=\operatorname{CMPLX}(A(K, L), 0,0)\)
I=1
IF(IKNOW.NE.O) GOTD 700
WRITE \((3.1000)\)
DO \(15 \mathrm{~K}=1\), N
DENOM \((K)=C E I G(I)-C E I G(K)\)
OO \(500^{-\cdots}=1\), N
IF(J-I) \(100,500,200\)
IF (J-1) \(110,110,150\)
IF (I-1) \(300,300,400\)
IF \((J-I-1) \quad 110,110,150\)
\(I F(J-I-1) 110,150,150\)
DO \(5 \mathrm{~K}=1, \mathrm{~N}\)
DO \(5 L=1, N\)
\(C A 1(K, L)=C A(K, L)\)
DO \(20 K=1, N\)
\(C A I(K, K)=C A(K, K)-C E I G(J)\)
\(0020 \mathrm{~L}=1 . \mathrm{N}\)
\(C A 1(K, L)=C A I(K, L) / D E N O M(J)\)
GOTO 500
50 DO 40 \(K=1, N\)
DO \(40 L=1, N\)
\(r A P(K, L)=C A(K, L) \cdots\)
\(0025 \mathrm{~K}=1 . \mathrm{N}\)
\(C A C(K, K)=C A(K, K)-C E I G(J)\)
OO \(25 L=1 . N\)
CA己(K,L)=CAZ(K,L)/DENOM(J)
DO \(30 \mathrm{k}=1, \mathrm{~N}\)
DO \(30 L=1, \mathrm{~N}\)
TCA (K,L) \(=(0,0,0.0)\)
DO \(30 \quad n=1, \mathrm{~N}\)
TCA(K,L)=TCa(V,L)+CA1(K,M)*CAZ(u,L)
```

C....+<-------------------- FORTRAN STATENENT
DO 35 K=1,N
DO 35 L=1,N
35 CA1(K,L)=TCA(K,L)
jOO CONTINUE
IF(AIMAG(CEIG(I))) 45,50,45
45 IM=I
I=I+1
ALPHA(IMN)=EIGR(I)
-BETA(IMN)=EIGI(I)
NMC(IMN)=1
IF(IKNOW.NE.O) GOTO 801
WRITE(B,1001) EIGR(I),EIGI(I)
801 DO 65 K=1,N
DO 65 L=1.N
65 SPS(K,L)=REAL(CA1(K,L))*2.0
DO 66 K=1,N
DO 66 L=1,N
CHI(IM,K,L)=SPS(K,L)
conTINUE
DO 1100 J=1,N
DO 1100 K=1,N
1100 P(IMN,J,K)=SPS(J,K)
I M N = I M N + 1
IF(IKNON.NE.O) GOTO AOZ
DO 80 K=1,N
80 WRITE(8,1002) (SPS(K,L).L=1,N)
ALPHA(IMN)=EIGR(I)
BETA(INN)=EIGI(I)
NMC (IMN) =0
WRITE(8.1003; EIGR(I),EIGI(I)
DC 55 K=1,N
00 55 L=1, H
55-SDS(K,L)=AIMAG(CAI(K,L))*2.0
00 56 K=1,N
DO 56 L=1,N
CHI (I,K,L)=SPS(K,L)
56 CONTINUE
OC 1110 J=1,N
00 1110 K=1,N-
1110 P(INN,J,K)=SPS(J,K)
IPN=IMN+I
IF(IKNOW.NE.O) GOTD 600
DO }85\textrm{K}=1,
15 WDITE(B,1002) (SPS(K,L),L=1,N)
GOTO 600
.0 continue
ALPHA(INN)=EIGR(I)
RETA(IUN) =0.0
NMC(IMN)=1
IF(IKNOW.NE.O) GOTO 804
WRITE(R.1004) EIGR(I)
04 DO 6n K=1,N
DO 60 L=1,N
0 SPS(K,L)=REAL(CA1(K,L)) B-13
DO 61 k=1,N

```

```

 \(0061 L=1, N\)
 CHI (I,K,L) \(=\operatorname{SPS}(K, L)\)
 61 CONTINUE
$001120 \quad J=1, N$
$001120 \quad k=1, N \quad \infty$
$1120 \quad P(I M A, J, K)=\operatorname{SPS}(J, K)$
$I^{\prime N}=I^{M N}+1$
IF(IKNOW.NE.0) GOTO 600
WO $75 K=1, N \quad(S P S(K, L), L=1, N)$
$\begin{array}{ll}75 & \text { WRITE(} 8.1002) \text { (SPS } \\ 600 & \text { IF(I.GE.N) RETURN }\end{array}$
$I=I+1$ -
GOTO 700
ENO

```
```

 FOPTRA.J STATEMENT
 SUBROUTINE SIMEQ(A, XOUT,KC,AINV,X,IERR)
 C THIS SUFRDUTINE IINDS THE INVERSE OF THE MATRIX A ISING
C OIAGONALIZATION PROCEDUPES
OIMENSION A(10,10),B(10,10), XDOT(11),X(11),AINV(10,10)
N=1
IERR=1
DO 1 I =1,KC
OO 1 J=1,KC
1 O(I,J)=A(IO
DO 2 I=1,KC
AINV(I,I)=1.
2 X(I)=XDOT(I)
DO 3 I=1,KC
COMP=0.
K=I
6 IF(ASS(A(K,I))-ABS(COMP;) 5.5.4
A COMP=B(K,I)
N=K
5 K=K+1
IF(K-KC) 6,6,1
IF(B(N,I)) {,51,8
IF(N-I) 51,12,9
DO 10 M=1,KC
TEHP=B(I,M)
B(I,M)=B(N,*)
B(N,M)=TEMP
TEMP=AINV (I,M)
AINV (I,M)=\DeltaINV (M,H)
AINV (N,H)=TEMP
TEMP=X(I)
X(I)=X(N)
X(N) =TENP
I2 X(I)=X(I)/E(I,I)
TENP=3(I,I)
DO 13 M=1,KC
AINV(I,M)=\DeltaINV(I,H)/TEムP
13 B(I,Y)=B(I,M)/TE:MP
DO 16 J=1.'C
IF(J-I) 14,16,14
IF(E(J,Y)) 15,16,15
14 15 X(J)=x(J)-9(J,4)*x(I)
TEUP=弓(J,I)
DO 17 \because=1,KC
MLANV(J,NITAIHV(J,N)-TENP*IINV(I,NS)
B(J,:!)=马(J,V)-TE,At*E(I,N)
17 CONT\NIJE
3 conitimis
RETIDN
51 MRETF(R,52)
52 FOQ"Si(GX.'THE MATFIX IS SIAGULAO*)
IFFP=0
RETUOV
ENC
2/2月179 12:12:22
!JOR [RFAOIN AT 12.प:33] REOOK-FLOT PROGPAN
! FORY/A/R/E/P/S FORT.LSル
!LISTING -a

The program described in this appendix solves the non-linear equations of motion of the beam in orbit incorporating the control laws obtained using the linearized model.

It can plot deflection of the bean at various instants of time with control and the time history of actuator forces required.

Data cards to be given are explained in the program by means of comment cards. A listing of this program follows.

EXIERNAL FCT, OUTP
COMMON/REDD/AOMEGA(10), OAMP (10), WC, NMODES,LNEAR,NACT, NSELCT, ISTATE COMMOV/REO/Z (10,20)
COMMON/RENDO/FREQ(10),Q(ว^),NPONTS,AL(20).ISELCT,NPLOT,NHRITE
COMMON/RGE/QMAXI. DMINI
COMMOV/REAM/PTTCH (INO),NPK, OSMALL
COMMON/REJA/AK (5,10),F(5,100),FF(100)
COMMON/KIM/IMULT
DIMENSTOM Y(20), DERY(20), AllX(R, 20), A(4), S(4), C(4), PRUT (5)
DIMENSION SIZE (:0)
CALL INJUT $(5,8)$
41 CONTINUE
CALL PLOGO (0.0.6.0)
OMAXI=0.0
NPK = 0
Q4IN1=0.7
NC=ORAITAL FRQUENCY,TOL=TOLQERANCE FOR RUNGE-KUTTA SUBROUTINE, BSAALL=SMALLEST VALUE OF DEFLECTIOV ALONG THE BEAM TO STOP PLOTTIN SIZE(I)-MAYIMIJM VALUES OF STATES FOR RIJNGE-KUTTA ROUTINE AOMEGA(I) - FROUENCY VALUES
PRUT (1) =INITIAL TIME, PRMT (2)=FINAL TIME,PRMT(3)=INCREMENT
$Z(M, N)=F E E \cap D A C K$ GAIN MATRIX
FREQII) _-FREOUENCY VALUES…
al(I) POSITIONS ALONG THE BEAM AT WHICH DEFLECTION IS CALUCULATE PEAD ($\overline{5}, \overrightarrow{9} 1) 00) \mathrm{WC,TOL,OSMALL}$

NSELCT=0 IF DEFLECTION PLOTS ARE NEEDED AT OVE PLACE OTHEP:YISE OVE NMODES=NUMZER OF MODES CONSIDERED INCLUDING PITCH
APONTS = VIJMRER OF POINTS -ALOAG THE- GEAM
ISELCT=TIME INTERVAL SELCTION OF PLOTING
NPLOT=1 IF PLOTTING IS NEEDED OTHERWISE ZERO
A.sRITE=I IF WRITIUG IS NEEDED OTHERNISE ZERO

NLNEAR=: IF ERUATIONS ARE NON LINEAR OTHERVISE ZERC
OS^ALL $=$ OUANTTTY DEFINING THE SMALLEST MAXIUUM DEFLECTION OME NAMTS
TO PLOT (DEFINIMG PQACTICAL ZERO)
MACT=VUMEER OF $A C T U A I N P S$
HACT=O THEA DATA CARDS FOR $A K(I, J)$ NEED AOT RE SUPPLIFD
COVTROL FOPEES CAN NOT BE PLOTTEN IF NACT=0
istate = No. of. states consinered for feedaack

1.ISTATE,IUリLT

IKK=2*A•^DES


```
9000 FORMST(3F10.0)
9003 FORMAT(2X.I2.2(E13.6.2X)/)
9004 FORMAT(2x,6(E13.6,2x)/)
9005 FORMAT(50X, 'SIZE VALUES')
9006 FORMAT(50X.*FR(NUENCIES')
9007- FORMAT(20X, PAPAMETERS:INITIAL TIME,FINAL TIME,INTERVAL*)
9008 FORMAT(50X, 'INITIAL VALUES*)
9011 FORMAT(2OX,'Z-EOTTOM PAFT OE AGMATRIX')
9123 FORMAT(50X, 'NUMBER OF BISECTIOVS`,I2)
9001 FORUAT(SF10.0)
    REAO(5,9001) (SIZE(I).I=1,IKK)
    READ(5,9001) (AOUEGA(i),I=1,NMDDES)
    READ(5,9001) (PRMT(I),I=1,3)
    READ(5,0001) (Y(I),I=1,IKK)
    CJ 10S M=1,NMODES
10B READ(5.9001) (Z(N,N),N=1,IKK)
9014 FORMAT(2I?.IU.6I2.I4)
    READ(5,9001)-(FREQ(I),I=1,NMODES)
    READ(S,900I) (AL(I),I=1,NPONTS)
    WRITE(5,9031)
9031 FORMAT(INX, 'VALUES NF K MATRIX')
    IF(NACT.EO.O) GOTO 9037
    DO 9030 I=1,aI\DeltaCT
    READ(5,9001) (AK(I,J),J=1,ISTATE)
9030 WRITE(S,9\capO4) (AK(I,J),J=1.ISTATE)
9037 CONTINUE
    WRITE(3,9003) NUONES,NC,TOL
    WRITE(8,9005)
    WRITE(R,จO\cap4) (SIZE(I),I=1,IKK)
    WRITE (9,00nも)
    WRITE(R,Q\O4) (AOMEGA(I),I=1,NMODES)
    WRITE(8,9007)
    WRITE(8,0004) (PPMT(I),I=1,3)
    WRITE(5,0008)
    WRITE(S,9004) (Y(I),I=1,IKK)
    WRITE(8.9011)
    DO 9013 M=1,NMCDES
    WRITE(B,9004) (Z(N,N),N=1,IKK)
0013 CONTINUE
    IF(NSELCT.FO.1) GOTO 9042
    CALL PGRID(0.2)
9042 CONTINUE
    CLLL RKSCL(IKK,SIZE,DERY,TOL,PRHP)
    CALL RKGS(PRUT,Y,DERY,IKK,IHLF,F「T,DUTP,AUX)
    PMAX=PITCH(1)
    PWIN=PITCH(1)
    DO 0015 IL=2,HPK
    IF(PMAX.LT.PITCH(IL)) GOTO 90IO
    GOTO 9017
    9016 PNSX=PITCH(IL)
9017 IF(PツIN.LT.PITCH(IL)) GOTO QO!5
    PMIV=PITCH(IL)
9015 CONPINIJF
    IF(دقS(OMAX).GT.AES(DMIV)) GOTO FOIR
    PMAX=AQS(PMIH)
```



```
        SURROUITIME FCT (X,Y, DERY)
        COMMON/PEDO/AOMEGA(10),DAMP(10),WC,NMODES,LNFAR,NACT,NSELCT
        COMMON/RED/Z(10,20)
        COMMON/REJA/AK(5,10),F(5,100),FF(100)
        COMMON/KIM/IMULT
        DIMENSIUN Y(20),DERY(20),AUX(8,20),A(4),B(4),C(4),PRMT(5)
        IF(NLNEAR.EQ.O) GOTO 14
        Z(1,1)=-1.5*SIN(2.*Y(1))
        DO 10 I=2,NMODES
        Z(I.I)=-((AOMEGA(I))**2/(WC**2)-(3.*((SIN(Y(I)))**2)-1.)-((Y(NMODE
        1S+1)/w(-1)**2))
```

 continue
 GOTO 15
 \(4 \quad Z(1,1)=-3.0 * Y(1)\)
 \(0016 I=2\), NMODES
 \(6 \quad Z(I, I)=-(A O M E G A(I)) * * Z /(W C * * 2)\)
 5 CONTINUE
 DO \(11 I=1\), NMODES
 \(1 \operatorname{DERY}(I)=Y(I+\operatorname{HO} O D E S)\)
 PITCH EQUATION
 NKC=NWODES + 1
 DERY (NKC) \(=2(1,1)+Z(1, N K C) * Y(N K C)\)
 DO \(12 \mathrm{I}=2\), NMOCES
 \(I J=I+N\) NODES
 IK=2*NMODES
 DEPY(IJ)=0.0
 DO \(13 \mathrm{~J}=\mathrm{I}\), IK
 \(\operatorname{DEPY}(I J)=D E R Y(I J)+Z(I, J) * Y(J)\)
 CONTINUE
 continue
 RFTURN
 END
 SUBROUTINE OUTP (X,Y, DERY, IHLF,NDIM, PRMY)
LOGICAL RKNXT
 COMNON/REDDO/FREQ (10), D(20), NOUNTS,AL(?O), ISELCT,NPLOT,NWRITE
COMMON/RAJ/OMAXI\&OMINI
COMMON/BEAY/PITCH(100),NPK, QSMALL
COMMON/REJA/AK (5,10),F(5,100),FF(100)
COMMON/KIM/IMULT
DIMENSION Y(20), DERY (20) $, ~ A U X(8,20)-A(4), B(4), C(4)$, PRMT (5)
IF(.NOT, RKNXT(IHLF)) GOTO 2
IF (NWRITE.EQ.O) GOTO 13
WRITE (8,001$) \mathrm{X},(Y(I), I=1$, NDIM)
01 FORMAT(2X,F10.3.6(E13.6.2X))
3
CONTINUE
IJK=2*NMODES
ISS=ISTATE/2
IF (NPLOT.EO.O) GOTO 12
I YULT $=$ I UULT $T+1$
IF(IMULT.EO.1) GOTO:1
IX=IMULT/ISELCT
$I M=I X * I S E L C T$
IF(IM.ER.IMULT) GOTO 11
GOTO 1?
11 continue
NPK $=$ NPK +1
PITCH(NDK) =Y(1)
IF (NACT.EQ.O) GOTO 16
D 10 TAC=1,NACT
$F(I A C, N P K)=0.0$
D) 15 JK=1,ISS
$F(I A C, N P K)=F(I A C, N P K)+\Delta K(I A C, J K) * Y(J K)$
CONTINUE.
DO 19 JKN=1.ISS
$F(I A C, N P K)=F(I A C, N P K)+A K(I A C, J K N+I S S) \neq Y(J K N+N M O D E S)$
CONT IMUE
CONTINUE
CONTINUE
DO $\triangle J=1$, NDONTS
$\square(J)=n .0$
DO $3 I=2$, NMODES
COSHH=(EXP(FREQ(I))+EXP(-FREQ(I)))/て.
SINHil=(EXP(FREQ(I))-EXP(-FREQ(I)))/?.
COSHWL $=(E X P(F R E O(I) * A L(J))+E X P(-F P E \cap(I) * A L(J))) / 2$.
SINHAL $=(E X P(F R E Q(I) * A L(J))-E X P(-F R E Q(I) * \Delta L(J))) / 2$.
OUP $1=(\operatorname{COS}(F Q E Q(I))-C O S H W) /(S I N H W-S I N(F R E Q(I)))$
DUPZ $=$ SIV (FREQ (I) *AL(J)) + SINHNL
$\operatorname{DUP} 3=\operatorname{COS}(F R E G(I) * A L(J))+C O S H W L$
DUP=DUP $1 *$ DUP $2+$ DUP 3
$D(J)=O(J)+Y(I) \star D U P$
CONTINUE
EONTIVUE
กи $\Delta x=3(1)$
ロMIN=9(1)
DO 5 M $=1$, MPOATS

```
\therefore....+<-\infty---*-*-*-------*-** FQRTRAN! STATEMENT
        IF(DMAX.LT.Q(M+1)) GOTO 6
        GOTO 7
        OMAX=O(4+1)
        IF(OMIN.LT.Q(M+1)) GOTO 5
        OMIN=?(M+1)
; CONTINUE
    WRITE(g,1R) BMAX,DMIN
B FORMAT(20X,'OMAX=',E13.6.'⿴囗IN=',E13.6,'**IN THIS CASE')
        IF(ABS(OAAX).GT.APS(OUIN)) GOTO B
        GMAX=\triangleBS(QM[N)
        GOTO 9
        QMIN=-ABS (DMAX)
        CONTINIJE
        IF(ABS(OMAX).LT.OSUALL) GOTO 12
        IF(QMAX.GT.OMAXI) GOTO 1910
        OMAX=QMAXI
        QUIN=-TMAXI
        GOTO 1911
910 (MAX1=OMAX
911 CONTINUE
    WRITE(A.10) QUAX,OMIN
0 FORMAT(10x, ***QMAX='.EI3.6.5x,***OMIN=',E13.6)
    IF(NSELCT.ED.O) GOTO 17
    CALL PLOGO(0.0.1.25)
    CALL PSIZE(R.0,1.0)
    CALL PGFID(0,2)
7 conTINUE
    CALL DLOX(OUIN,Q,OMAX,NPONTS)
2 CONTINJE
    CONTINUE
    RETURN
    END
```

End of Document

[^0]: *For references cited in this report, please see reference list after each section.

