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ABSTRACT
&,
The equations of planar motion for a long, flexible free-free
beam in orbit are developed and include the effects of gravity- \
gradient torques and control torques resulting from point actuators b

located along the beam. The actuators control both the orientation
and the shape of the beam. Two classes of theorems are applied to
the linearized form of these equations to establish necessary and
sufficient conditions for controllability for preselected aciuator
configurations. It is seen that the number of actuators, if pro-
perly located, can be less than the nunber of modes in che model.
After establishing the controllability of the system, the feedback
gains are selected: (1) based on the decoupling of the original
coordinates and to obtain proper damping and (ii) by applying the
linear regulator problem to the individual modal coordinates sepa-
rately. The linear control laws obtained using both techniques

are then evaluated by numerical integration of the nonlinear system
equations. Numerical examples are given considering pitch and vari-
ous number of modes with different combination of actuator numbers
and locations. The independent modal control concept used earlier
with a discretized mcdel of the thin beam in orbit is reviewed for
the case where the number of actuators is less than the number of
modes., It is seen that although the system is controllable it is
not stable about the nominal (local vertical) orientation when the
control is based on modal decoupling. An alternate control law not
based on modal decoupling ensures stability of all the modes.
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I. Introduction

The present gr&aat represents a rontinuation of the effort attempted
in the previcus grant year (May 19/7 - May 1978) and reported in Refs.
1 and 2.* In Ref. 1, a discretized planar model of a free-free beam
in orbit was developed assuming the beam to be represented by a max-
i{mum of three point masses connected by {dealized springs which ac-
counted for the structural restoring effects. First order effects of
gravity-gradient torques were included. It was aseuzed that two of
the discrete m2sses were at the ends of the beam and that the third
mass was at an interior position, later taken to be at the middle, when
the beam was undeflected, and along the local vertical. Control was
assumed to be realized by the action of one or two actuators located at
the end masses, and implemented according to the concept of distributed
modal control.3 According to this concept, direct independent control
in each mode considered is possible when the number of actuators is
equal to the number of modes in the system model (neglecting the effects
of higher modes not included in the model); when the number of actuators
(P) is less than the number of wuodes (N) direct control cf P modes may
be implemented by proper selection of control law gains and the remain-
ing N-P modes are effected acrording to the residual coupling in the
control influence matrix arcording to the gains selected for the P
artuators.

In Ref. 2, a mathemarical model of a long, flexible free-free beam
in orbit was obtained using the formulation developed by Santini%4 (in
modified vector form) which develops the general equations of a flexible
spacecraft in a gravitational fizld. The motion of a generic point in
the body is described as a superposition of rigid body motion plus a
combination of the flexible structural modes. The beam's center of
mass was cssumed to follow a circular orbit, the beam considered to
be long and slender (shear deformation and rotational inertia effects
neglected), and the axial deformation was assumed much smaller than the
jateral deformation due to bending. In kef. 2, the emphasis was placed
on th2 analysis of the uncontrolled dyramics of this system where motion
was restricted to occur only within the orbit plane; the equations of
motion consisted of: a single equation describing the ir plane (pitch)
1ibration (rigid body rotational mode) and "s" generic modal equations
expressed in terms of the vibrational modal amplitudes as the variables.
For planar motion with only flexural vibrations, it was seen that the
pitch motion was not influenced by the beam's elastic motion.

*For references cited in this report, please see reference
1ist after each section.
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For large values of the ratio of the structural modal frequency to the

orbital angular rate, the ciastic motion and pitch were decoupled; for

small values of this ratio, the elastic motion was found to be governed “
by a Hi11l's three-term equation which could be approximated by a Mathieu

equation, and the resulting stability considered by means of a Mathieu \
stability chart. Numerical simulations verified the possibility of

vibrational instability for very long flexible beams in near-earth

orbits.

In this report the control of an orbiting beam based on the
continuum model of Ref. 2 with point actuators along the beam is ex-
amined. The format adapted in preparing this report is as follows:
Two papers to be presented at the following conferences respectively,
form the bases for Chapters II and III:

1. Second AIAA Symposium on Dynamics and Control of Large
Flexible Spacecraft, June 21-23, 1979, Blacksburg, Va.

2. 1979 AAS/AIAA Astrodynamics Conference, Provincetown, Mass.,
June 25~27, 1979 (only the contributions by A.S.S.R. Reddy
and P.M. Bainum are included here).

The first paper is concerned mainly with the modelling of point
actuators, controllability conditions for a preselected set of actua-
tors and a sample numerical case with one actuator and pitch plus two
modes in the model. The second paper describes two control gain se-
lection techniques using state variable feedback. The first technique
uses decoupling of the original linearized equations of motion as a
criteria to select gains and the second one applies the linear regu-~
lator problem to the system equations expressed in the independent
modal coordinates.

In Chapter IV the independent modal control concept as apolied
to a discrete model of the orbiting beam developed earlier,1 is 1
reexamined according to controllability and stability considerations.

References are given separately for Chapters II, III, and IV.
Symbols are defined in the text when and where they are used.

Chapter V describes the general conclusions together with recomen-
dations for future work.

The introductions of Chapters II and III provide further details
of the state of the art of beam modelling with relevant references.
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II. On the Controllability of Long Flexible Beam in Crbit.

Abstract

The equations of planar motion for a long, flexible free-free beam
in orbit are developed and include the effects of gravity-gradient tor-
ques and control tcrques resulting from actuators assumed to be located
at specific points along the beam. The control devices are used to
control bcth the orientation as well as the shape of the beam. Applica-
tion of two classes of theorems to the linearized “orm of these equations
is used to establish necessary and sufficient conditious for controllabil-
ity for different combinations of number/location of actuators with the
number of modes contained in the mathematical model. It is seen that
the number of actuators, if properly located, can be less than the num-
ber of modes in the system model. A numerical example illustrates the
controlled response to an initial perturbation in both pitch angle as
well as beam shape.

1. Introduction

Large, flexible space systems have been proposed for future use in
communications, electronic orbital-based mail systems, and as possible
collectors of solar energy for transmittal to power statiomns on the
earth's surface.ls2 Because of the inherent size and necessarily low
weight to area ratio, the flexible parts of such systems become increas-
ingly important and in some cases the entire system must be treated as
being non-rigid. For meeting the requirements of these (and other) pro-
posed missions, it will often be necessary to control both the geomet-
rical shape as well as the orientation of the configuration.

Previously the formulation of the_dynamics of a general flexible
body in orbit was provided by Santin1.3 As a specific example, the
equations of motion for an uncontrolled long, flexible uniform free-
free beam in orbit were developed using a slightly modified version
of the Santini formulation.4 The motion of a g2neric point 1in the body |
was described as the superposicion of rigid body motion plus a combina-
tion of the elastic modes. Furcher it was assumed that the system center !
of mass followed a circular orbit and that the pitch (rotation) and flex-

ural deformations occurred within the orbital plane; also the elastic !
motion was assumed to be the result of only flexural vibrationms. l

II-L
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The equations were linearized about a postion of zero structural deforma-
tion and alignment of the beam along either the local vertical or orbit
tangent. It was seen that, in the absence of contrel, for small ampli-
tude pitch, the pitch equation was uncoupled from the generic modal equa-
tions and that the generic modal equations were dynamically coupled with
pitch only through a second order velocity term. Numerical simulations

‘verified the possibility of vibrational instability for very long flex-

ible beams in near-earth orbits.4

In the present paper, the uncontrolled system considered in Ref. &4
will be modified to include the effect of actuators located at specific
point locations along the beam (Fig. 1). The modelling of actuator
forces will be restricted to the case where the elastic displacenents
remain small as compared with typical beam dimensions of the order of
hundreds of meters. For preselected sets of control devices (number and
location) and the total number of modes in the system model, contxollabi-
lity conditions will be examined and some represantative numerical re~
sults showing the rontrolled response of an initially perturbed system
will be discussed.

Z, T
?

outward local vertical
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)
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w U \ 7 2, €
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e N~

8(x,t) = L A (t) o"(x)
nn

Figure 1: Beam Configuration with First Mode Deflection and p
Actuators.

2. Mathematical Modelling

A. Equations of Motion for a Thin Beam in Orbit

The equations of moticn for a thin homogeneous uniform beam whose
center of mass is assumed tc follow a circular orbit have been developed
in Ref. 4. TFor the case where all rotations and transverse elas- |
tic displacements are assumed to occur within the plane of the orb{F,
and where the earth's gravitational field is considered to be spherically

II-2
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CONTROLLABILITY OF A LONG FLEXIBLE BEAM IN ORBIT

symmetric, these equations can be reduced to (Eqs. (24) - (25) of Ref. 4):

@- + (302 sin 20)/2 = T_ =N /J (1)
dt c P P

a2a, 2 _ 2 2 de _ .2 -
—= + [ @, - & (3sine-1) - (dt w)%] A = En/Mn (2)

8(t) represents the pitch angle between the undeformed
longitudinal axis and the local vertical

A (t) is the modal amplitude of the DEE generic mode

is the nEh modal natural frequency

W
n

W, is the orbital angular rate

Tp is the external pitch acceleraticn, NP/J

En is the effect of external forces on the n-Eh

generic mode

M is the generalized mass of the beam in its n-til'—1 mode

It was further assumed that all elastic displacements are small as com-
pared with the beam length. It can be concluded that there is no first
order influence by the elastic motion on the rigid body pitch mo .ion,
but that the pitch motion affects the elastic motion due to nigher order
coupling. When the ratio of structural modal frequency to orbital rate
is small and the pitch amplitude is small, 1t is shown’ that the uncon-
trolled elastic motion can be approximated byaMathieu equation, and with
t: 2 aid of a Mathieu chart parametric instability regions can be readily
identified.

For the development of the actuator modelling and subsequent cor-
sideration of cortrollability, Equations (1) and (2) will be linearized,
and time and length will be nondimensionalized according to

T =t (3)

Z

n

Anlz (4)
where 2 = length of the undeformed t2am.

The resulting linearized system equations are:

qZ t38= Tp/w(z: (5)
d?z 2

u+(ﬂ‘-)"=E/MrL2- =1, 2 (6)
'd?_' wc un n’a wc a , y see

II-3
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By defining

8 =X de/dr = X1 = Xpi1
Z, = x and .
ll 2 dZ{drr Xo = Xp4p
| ' :
i ! | @)
zn—l = Xn dzn-l/dT = Xn = xZn
eqs. (5) and (6) may be written in the standard foru:
> _ |
X PQ_LNEJ X + B, U (8)
|
L I 0 J
where X=1x X X_s X ]T state vector
- 1* X2 v v 0 XprXpgyr ¢ v Xl 0

0 = nxn null matrix
I = nxn identity matrix
h O

(wl/mc)%\\

~

1 I 2
l O “n-1/u J
I
i)
= [7 2 2 24T
U, [;p/wc » By/M 20l , . E /M- 1%]

and represents the contrcl vector

B. Modelling of the Point Actuators along the Beam

It is assumed that p actuators be located along the beam at points
[N Ez, « « Epy where £ lies along the beam's undeformed longitudinal
a¥is and £ = 0 correwponds to the mass center of the undeformed beam.
The actual control forces associated with these actuators w:11 be
desigrated £., £, . . fj e . . , respectively. For small elastic
displacements thé component of the control force, fJ, parallel to the
£ axis 1s very small and the component parallei to the g daxis can be
approximated by f;. Thus the control torque due to the j th actuator
may be expressed by

ij= Jrx dem €))

II-4
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where 4
— n, =
£, = k£, §(¢- 5
r = i+4q
&5 9y (&:j)
- o n —
qQ, = X ¢ (8) A () k
3 z n
n=1
and ¢: is the z th component of the modal shape '
function corresponding to the n th mode -
After integration there results
ﬁ; = -E'fjsj x(const for a uniform beam) (10)
h|
For convenience the coastant will subsequently be incorporated into
fj. It is then clear that for p actuators,
N =:tN =-3J[f€ +fE& +...+f 11
and that this term divided by the pitch ax.s moment of inertia, J,
yrovides the control acceleration for the pitch motiom.
For the generic modal equations the control forces can be trans-
formed int- the corresponding modal forces by3»4
E =/3"¢«F dn (12)
n J
]
Under the assumptions previously stated,
= n -
I-:n:l fj ¢z (gj) x(const.) (13)
As before, the co.stant will be incorporated into f; so that the effect
of ali p thrusters on the n th generic mode can he expressed by
- n , n ,,
En fl ¢z 51) + ...+ fp ¢z (“p) (14)
The control vector, UC, can now be related to the actuator forces,
actuater locatioms, and modal shape functions by
J]
II-5
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- 2 _p /302 - 2 7] 1
El/Jmc, £, JuZ, . . « e ’ t:p/Jmc £,
1 2 41 ? 1 2 £2
UC. ¢z(51)/?1mc’ ¢z(€2)lulwc’ v e ey ¢z (Cpl)/ulzmc :
1 ! ' i '
: n‘l ! / 2 2 n_l ll 2 2 ;fp
I ¢z (El) Mx‘.-l o’c! ¢ - . ¢ (Ep) Mn_l wC L
L o
nxp pxl *5)
If the nxp matrix appcaring in Eq. (15) is denoted by B ¢? then
Eq. (8) may be expanded in the follcwing form:
~ . - mad | - -
\
P Xy 0 : 1 ‘1| 3
. nxn nxn
Xt s m— o = X2 | ¢
, =2 1 2 { |
P 1 ! | ¢
! “lo I | Bxa i g
l". e/ v 21 I ' 3
X2n - _Xl:_1_| I in ! £
E
L 3
y o ) | 4L |
i N T T L
o fl i
nxp i ;
S Y (16) ]
oy 3
act 1 -
!
nxp p $
The modal masses appearing in B can be evaluated for homogencous
free-free beams and shown t> be independ:nt of the mode number.
Specifically, iiy - of where 2 is the undeformed length and p represants ﬂ
the mass density per .nit length. 4
3. Controllabilicy d
A. Statement of the Controllability Theorems #
x
Eq. (16) can be written as
1
X =0 1 X o+ "o £ ]
(17) 4
-4 0 LB ;
{
II-6
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CONTROLLABILITY OF A LONG FLEXIBLE BEAM IN ORBLL

I = nxn identity matrix

B = Bact’ nxp matrix

T
o}

The system represented by Eq. (17) is controllable if the pair
[a,8] is controllable’ - i.e. it cen be proven that the controllabi- .
lity matrix associated with the original state and control coefficilent %
matrices r

l 0 I 0
bo=A 0 ’ B

-

fo [£,£,...f

where ) T . E
K= Dxp X v v s Xpo Xpugr 0 * Xgp] N g
j

AR

has rank 2n if and only if the controllability matrix associated with i
the pair of reduced state and control matrices, ¥

[, B) ;

7 .
Furthermore, if the matrix A has eigenvalues of unit multiplicity
(i.e. non-repeated e. jenvalues), the system given by Eq. (17) is con-

trollable if and only if cz=ch row of B has a non-zero entry. 1

has rank n.

2 oedh Bk

-

For the case where A has repeated e.genvalues (multlplicity greater
than oaz), the reduced order state matrlx, A, can be written in Jordan

AN

block matrix form. If the eigenvclues Ay, Ay . . . Ap havemultiplicity 1
of my, np, « « . D, respectively, with ? ny = n, then A canbe trans-
m i=s1 R
formed as 4
- F
Jn 1
1
J b
2 (18)
| \ . H
1 \ ¢}
\ 3
: J E
- n, k
where 4
Ny, 1 o0-—— 0 0
—_—— — 0 ¢ 3
3 ? }j -l\\ ro :
n, = | I 1 ~ ] ] (19)
3T 1o 0 0o——= 1 :
] j 3
—_—— — A
_0 0 o 3] ;
Py %P J
L
11-7 3
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P.M. BAINUM AND A.S.S.R. REDDY

The system (17) can be divided into m subsystems. For the system (17)
to be controllable, these m subsystems -ith tneir corresponding blocks
in the B matrix must each be separately controllable.

B. Application of the Controllability Theorems

The theorems briefly outlined here will now be applied to several
cases of interest for different combinations of numbers and locations
of the actuators along the beanm.

Case 1: One actuator at oue end of the beam with pitch and two generic
modes contained in the mathematical model.

The actuator is assumed to be located at the left end (Fig. 1) £ =
-2/2. The first and second modal shape functions for a free-free beanm
can be evaluated at that point to yield8

1 2
o) -2/2) = o2 (-2/2) = 2
and Ml = Mz.s

The state equation for this system can be exparnded in the form of Eq.
(17) with the result that

r3 00 ,.a

A= iO c O

H ' b

0 0 d b

where 2/2Jm§ b = 2/ 202
c = (mllmc)2 d = (wzlwc)z

The controllability matrix based on the reduced system matrices, A
and B, becones

3a 9a
C= (B! AB | A%B] = | b be bec?
b bd bd?

For controllability the matrix, C, must have a rank of ?, or
det C = - ab? (c-d) (c=3) (d-3) # O.
The necessary and sufficient conditions for controllability become
wy # w, (trivial) ; wy # /Ehc 3wy # /Sbc
The last two of these conditions will, in practice, place a lower bounds

on the stiffness and/or an upper bounds on the length of such a long flex-
ible structure in orbit.
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A=
0 ¢ l_b b
with - ; 2 2
am= 2/2ch b= Z/Mlﬁmc c = (wl/wc)
The resulting controllability matrix
a -al 3a -3a ¢
C= i i
b b be be 4
] »
has rank 2 <ince the B matrix has rank %. Thus, the system controllabi- ;
lity is ensured. g
Case 4: Three actuators two of which are assumed to be located at 1
the ends and the remaining one at the mid point of the beam; ¥
the model contains pitch plus the first two generic modes. 4
For this case ;
[3 0 0 a -a 0 3
! 1
A= {0 ¢ O B = b b -¢ 3
!0 0 d b -b 0
II-9 1
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Case 2: Three actuators two of which are assumed to be placed at
the ends and one at the mid point of the bean, with the
mathematical model containing only the first :wo generic modes.

For this case,

c 0 a a =-b

B =

A= 0 d a-a 0

with 2 75 2
am= 2/M12mc b = Zlullwc with M, = M

1 2
and c¢,d defined as in Case 1.
The controllability mattfx may be calculated as

a a =-b ac ac =bc
a-a 0] ad -ad 0

It can be seen that since the B matrix itseif has rank 2, then C
will automatically have rank 2 and the system concrollability is inde-
pendent of the nature of the matrix A.

C=

Case 3: Two actuators one each at the ends with pitch plus the first
generic mode in the system model.

For this system the A and B matrices In Eq. (17) become

M3 0 Bﬂfa—aj
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with ¢,d as defined in Case 1

- 2 . - 2 . = A
and a 2/2Jmc : b 2/M12mc ;. e /Eynlxxc
and M, = M

1 2.
The controllability matrix,

a -a 0! 323 -32 0! 9a -9a 0
C=|b b-e : be be —ce: be?2 bzl —c2e
b -b 0y bd -bd 0, bd?2 -bd2 O

must have rank 3 to ensure the system is controllable, which means that
from the aine columns it must be shown that at least one 3x3 uon-zero
determinant exists.

I1f we arbitrarily select the first, third, and fourth columns,

then  _eab (4-3) # 0

which is guaranteed if w, # JEbc. Although this is a sufficient con-
dition for controllability at this point we don't know whether it is
also a necessary condition.

As an alternate, let us select the first, third, and sixth columns
of C; then
ab? (d-c) (c=3) (d-3) # 0
which will be ensured if the following sufficiency

conditions are satisfied:
Wy ¢ wys W # /Sbc, and w, # /§bc

In order to establish necessary conditions,we will now assume that
any two of the frequencies are the same and then apply the theorem for
the case of repeated eigenvalues.

(a) First if it is assumed that ¢ = d (ml = mz),the corresponding
subsystem matrices are

c O _ (b b -
A[Oc] B—b-bo]
(5.
Since the B matrix has rank 2, the condition: ¢ # d, is not

necessary for controllability.

(b) If it is assumed ¢ = 3, (wl = /Sbc) the corresponding sub-
system matrices are

Sl T N

Since B has rank 2, the system is controllable for this case.

II-10
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CONTROLLABILITY OF A LONG FLEXIBLE BEAM IN ORBIT 10

4

(c) We now consider the case when d = 3(w2 = JSAC) where the \ A
subsystem matrices are \k

3 O] a -a 0
A= B =

0 3] b -b 0
C = a -a 0 : 32 =32 0 '

b -b 0 | 3 -3b 0

The controllability matrix has only one independent column and .
can not have rank 3 when wy = /Ebc.

and

(d) Finally we consider the case where 3=¢=d or Wpiteh = W] = Wy
(admittedly, of only academic interest)

Then [3 0 0 a -a 0
A= |0 30 B= |b b -e
00 3 b -b 0 ,
and ( a -a 0 13 <33 0 : 9a -9a 0 | :
C= | b b -e {3 3b <31 9 95 —ge
b -b 0 |3 -3 0, 9 -9 0

It can be observed that the C matrix can not have rank 3.

In conclusion, we can say that only one of the three necessacy
conditions is also a sufficient condition for controllability, i.e.

w, # V3w,
In actual practice the repeated frequencies associated with the modes
included in the model will be known sc that it is possible to verify
in advance of the selection of the control law whether the particular

choice ~f number and location of actuators will result in a con-
trollable system.

4. Numerical Example

A numerical example of Case 1 is considered where it is assumed
that the control force generated by the single actuator depends on
only rate feed-back according to

f17 0 Bpxp #Kpxp + Kyxy »
where the ii are the pitch, and non-dimensionalized first, and second }
modal amplitude derivatives, respectively, with respect to the orbital
time, T.
3
13
3
II-11
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It is assumed that the fundamental natural frequency of the free-
free beanm is 1/199 eps and that the c.m. moves in a 250 n. mile alti-
tude circular orbit. For this case

(@;/w )% = 3200 ang (w,/w)? = 28,800,
As an example, a 100m. long slendér hollow tubular beanm made of wroughc
aluminun (2014716) and with an outside diametar of 10.79%m, and thickness
of 1.06cm, would exhibit these frequencies

The completely nontrivial part of Eqs. (16) or (17) may be ex-
Panded to yield

% + 3xl-59-52K1x1-59-52K2x2 -59.52K;%5 = 0

X, + 3200x2 -20.0K2x2 -20.0lel -20.0K3x3 =0

X3 +28,800x3-20.01(3x3 —20.0K2x1 —20.OK2x2 =0
If we arbitrarily select K. = -0.00577, Kz = -0.05656, and K. =
~0.01695 (note these gains would correspofid to much less than critical
damping if the other coupling terms in rates did not appear) and assume
that the inisial conditions are x,(0) = x2(0) = x,(0) = 0.01 and all
initial x, (0) = 0, the controlleé responSe is iliustrated in Fig. 2.
The relativelv 'rag response time with the relatively low level of
peak thrust .1u:d be noted.

0.02;

20000.0

0 (radians)
B
—
>
D>
D
)

)

i \/ v
time. t (seconds)

Pitch

-0.02

Fig. 2A

Figure 2: Case 1 - Controlled Response, Pitch + Two Modes
with One Actuator at Left End.
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ORBIT

0.01

enveliope

Time t (seconds)

A1 (Non-dimensionalized)

1
[=]
.
o

50000.0

Fig. 2B

0.01

‘(f-envelope

Time t (seconds)

A2 (Non-dimensionalized)

1
(=]
(o]
=

-

50000.¢

Fig. 2C

7§1gurc 2: Case 1 - Controlled Response, Pitch + Two Modes with

One Actuator at Left End.
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w
.
(Yo

envelope

— 50000.0

time t (seconds)

f (Forcein milli-newtons)

|
w
.
(Ve

Fig. 2D
Figure 2: Case 1 - Controlled Response, Pitch + Two Modes
with One Actuator at Left End.

This example is presented as a verification that the system in
Case 1 with the number of actuators less than the number of modes is
corcrollable. In a related paper methods of selecting control law gains
based on decoupling considerations is discussed.? Control gains are
selected based on the following two criteria: (i) decoupling of the
linearized systen equations with appropriate state variable feedback;
and (ii) applying the linear regulator problem to the n modal coordi-
nates separately and thus selecting the gains by solving groups of n
two dimensional matrix Riccati equations.

5. Concluding Remarks

In the present paper a model is developed for predicting the dyna-~
mics of a long, flexible free-free beam in orbit under the influence of
control dzvices which are considered to act at specific points along the
beam. Application of two classes of theorems establishes the necessary
and sufficient conditions for controllability and clearly demonstrates
that the number of actuators, if properly located, can be less than the
number of modes in the system model.

The insight gained by this preliminary study will be useful in
analyzing the dynamics and control of more compiicated structures such
as of a large flexible plate in orbit, which nore adequately represents
a large flexible orbiting platform. Another possible extension to the
current work would be a study of the effect of using control devices
which are distributed along the beam instead of being treated as point
actuators.

II-14
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III. Decoupling Control of a Long Flexible Beam in Orbit «
. A
"
Control of large flexible systems using state L

variable feedback is presented with a long flexible
beam in orbit as an example. Once the controllabil-
ity of the system is established, the feedback gains
are selected: (1) based on the decoupling of the
original coordinates and to obtaln precper damping
end (i1) by applying the linear regulator problem to
the individual modal coordinates separately. The
linear control laws obtained using both techniques -
are then evaluated by numerical integration of the

non-linear system equations. The response of the

state together with resulting beam deflection and

actuator force (s8) required are obtained as functions

of time for different combinations of the number/lo-

cation of actuators and the number of mod2s In the

system model. Also included are results showing the

effects (control spillover) on the uncontrolled modes 4
when the number of controllers is less than the num-

ber of modes, and the effects of inaccurate knowlege

of the control influence coefficients which lead to
errors in the calculated feedback gains.

1. Introduction

Future proposed space missions would involve large, inherently
flexible systems for use in communications, as collectors of solar
energy, and in electronic, orbital-based mailsystems}* For the
first time the flexible parts, and in some cases the entire system,
due to its size, must be modelled as being completely flexible., 1In
order to satisfy the requirements of such missionms, it will be necessary
to control not only the orientation of the system but also the geo-
metrical shape of the configuratlon.

As a specific example of the general formulation of 't .z dynamics of
an arbitrary flexible body in orbit developed by Santini-, the uncon-
trolled motion of a long, flexible beam was investigated.4 The motion
of a generic point ir the body was described as the superposition of
rigid body motion plus a combination of the elastic modes.
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Further it was assumed that the systew center of mass followed a cixr-
cular orbit :nd that the pitch (rotation) and flexural deformatiuns
occured within the orbital plane. For this planar motion, it was seen
that the pitch motion was not influenced by the beam's elastic motion.
The decoupling of pitch and the elastic modes was observed for large
valuas of the ratio of the structural modal frequercy to the orbital
angular rate, When the values of this ratio are small the elastic mo-
tion is governed by a Hill's three-térm equation which could be approxi-~
mated by a Mathieu equation, and the resulting stability was considered
by means of a Mathieu stability chart. Numerical simulations verified
the possibility of vibrational instatility for a very long uncontrolled
flexible beam in near-earth orbits.%

The controllability of a long flexible beam with point actuators
located along the beam is considered in Ref. 5 for the case of small
amplitude flexural deformations (Fig. 1). Necessary and sufficient
conditions for controllability with presclected locationrs of actuators
are derived using theorems developed in Ref. 6. Once controllability
is assured, values for the gains in the control laws are selected on an

arbitrary basis, and only tor one combination of actuator location and
number of flexural modes.

Z, 1
A

outward local vertical

) ;
. ) 6(%,' t)
)
/ \ 7

1N
\[”‘_:’__/ T — X, &
’W\
7~ ~

6(x,t) = T A (t) o"(x)
nmn

Fig. 1. Beam Configuration with First Mode Deflection and
P Actuators.
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In the present paper selection of cortrol gains for any larg2
£lexible system using the following two criteria is discussed: (1)
decoupling of the_linearized system equations with appropriate state
variable feedback7; and (i11) applying the linear regulator problea to
the modal coordinates (n) separately and, thus, selecting gains by
solving groups of "n" two by two matrix Riccati equatioms. »9,10,11

A long flexible beam in orbit is taken as an exars>le with the
model developed in Refs. 4 and 5. Gains are selected using the tvo
techniques and numerical simulation of the non linear equations is
employed to predict the responses for sample cases. The deflection
of the controlled beam at various inst-nts of time is also {1lustrated.

2. Decoupling bv State Variable Feedback

After appropriate linearization the dynamic model for any flexible
system can be represented by

AX - BX + CX = DU (1)
where A is an nxn non singular matrix
B,C are nxn matrices
D is an nxn-matrix
X 1s an nxl state vector reprerenting deflectiouns
in addition to the rigid body rotations.
U 1is an mxl control vector
Equation (1) can be written in more standard state space form oy definang

X=X X = Xy = il as

fxl e e s 0
= + U (2)
- -1 -1 -1
9 A ] I AD
111-3
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Equation (1) takes into account the modelling of any structural damping
iuherentlv present in (he system. Controllability of the systems repre-
sented by Equation (2) can not be obtained using theorems developed in
Ref. 6, unless B =+ 0. In casar where B # 0, the controllability matrix

of the pailr \
0 I 01
-1 -1 and - | must have rank 2n.
-A"C -A"B A Hﬂ

After choosing a state variable feedback control law of the Zorm

U = KX + LX (3)
where

K = mxn rate teedback gain marrix
L = uxn position feedback gain matrix
Equat.ou (1) can be rewritten as:

X+ A A"tk + o leeabhyx =0 (%)

For decoupling of the states X = (X, X9y eees xn)T
the matrices (A—1B-A-1DK) and (A~1C-A~1pL) must be diagonal.

te. & lp-alog =g (5)
s te-alon = o (6)
where - ] - N o
T 0 ... 0 an 0 0l £
g = 0 ee. 0] andw-= 0 oy oee O 8 ]
| 2ttt ; 22 000 D (8 i
! ' ! ! ' ! ;
. ] 1 ' i
0 0 ... ¢ nn 0 0 ... wnnJ L
Redef.ning 9
Als=r, alc=r :
-1 9) ]
A D=¢G J
we have . A
E K=1 (10) .
F~-GL=uw (11)
with “h i
Ki = i"" column of the K matrix .‘
L = ith column of the L matrix )
4
I11-4 f
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1

31 L 4

Ei' = 1t column of (E-g) matrix ; %i
n 4

Fi' =it column of (F-w) matrix

3
Equarions (10 and (11) can be uritcen as 2n sets of algevraic fj
equations of the fora: v 13
y H
' L
Ky = By 1=1,2, ..n (12) i
- ! k;
GLi T ;
Consider one of the above sets of linear algebra’: equations for the :
case whece 1 = 1, 3
o1
t3 \ ’i
GKl El (13) i
There are n equations and m unknowns (the eiements in the first column 3

of the Kmatrix).The fundamental theorem for a set of n linear equations
with m unknowrs is now applied12’13: .
For a unique solution: p
3
Case 1: If n > m (more equations and less unknowns) the rank of G 3
and the augumented matrix [G, El'] must be n. »
Case 2: If n = m (number of equations = number of unknowns) the i
rank of G and the augumented matrix [G | E,’] must. be m 3
(or n) - f.e. G must be non-singular. ¥
g
Case 3: If n < m (less ejuaticns, more unknowns) no unique solution 3
exists. %
For non-trivial solutjion: 3
Case l: If n > m (more equations and less unknowns), the rank of G é
and the augumented matrix [G| Ef] < m. 3

Case 2: If n = m (number of equations = number of unknowns), the
rank of G and the augumented matrix [G :El'] < m. If the J
rank = m = n, a unique solution exists. &
1

E
Case 3t Tf n < m (less equations and more unknowns) the rank of G and 3
the agumented matrix [G! El'] <n. :
1
These conditions must be satisfied by the 2n subsystems given by 4
(12) for decoupling to be implemented and, thus, dictate the choice E |

of the actuators.

Tor cases where the number nf actuatcrs are more or less tnan the
number of original coorainates in the sye<tem, the controllabilaty con-
ditions and the conditicns to be satisfied for decoupling may pose
numerical (computational) problems, esvecially when the order of the
systen i=s large.

e
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wWhen the number of actuators equals the number of original coordinates
all controllability and decoupling conditions depend on the non
singularity of matrix, G. This matrix 15 an nxn matrix and can be
made noa-singular by properly selecting the location of the actuators.

If there are 6 original coordinates and 3 actuators, then the con-

trcllability matrix has 36 columns out of which 12 columns must be
independent to have rank 12. The maximum number of determinants to be
eval.uated are

36c - ..3_.6L——
12 121241

Ausuming a | sec. computational time required for the evaluation of
each twelth order determinant, the examination of all possible com-
binations tould involve 347,688 hrs. of computer time.

= 1.2516775x109 determinants.

Specific cases, where controllability of this system is examined
when the number of actuators differs from the number of modes in the
system model are presented in Ref. 3, but only for a low order system

(nmax. 3).

3. Linear Regulator Problem

Using modal analysiss’g’lo’11 dynamical systems represented by
(a):
Mg + Gq + Cq + Kq = u(t) (14)
vwhere q = n dimensional vector describing angular and elastic
displacments
M,K = positive definite mass and stiffness matrice
G = gyroscopic antisymmetric matrix
C = pervasive damping, either positive definite or
semidefinite matrix
u(t)= control vector
or by (b): .
Mq + Gq + Kq = u(t) (15)
with M=u, G=-GF and K = K

can be transformed to

(a) X+ DX+ FX=Eu-=u' (16)
or . .
) X+ F{=Eu=u' 17

with D and F representing the diagonal transformed matrices.
The left hand sides of Eqs. (14) and (15) represent either

damped or undamped harmonic oscillator  These oscillators can be con-

trolled optimally and independently with one control force for every
independent modal coordinate.
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The actual control, u(t), in the original coordinates, q,, can be 2
calculated from the control, u'(t), in the decoupled (modal) coordinates, ]
Xi: by s .?

u=E ly' (18)
The ith component of the control vector, u', can be calculated as t

follows:

‘The ith independent modal coordinzte is governed by

Xy ¥ DyXg
where Di - ith

Fi =

Equation (19) can be written in state space form by defining

= 1!
+ Fixi u'y (19)

diagonal clement of the D matrix

ith diagonal element of the F ratrix

Xg "Xy 0 X ® Xy %Xy

1 2 1
¥
X X
il 0 1 il 0 3
. = + Ui' (20) ;
X -TF -D X 1 7
i2 i i 12 F?
3
similar to the standard form g
'
X = Ax + Bu (21)

A performance index for the ith modal coordinate is defined as

= 7 T ¥ 2
Iy .g (xqQxy + (uy ) Ry)de (22) &
9
where 2
Qil 0 F’
Qi = and Ri is a scalar. E
0 Q :
12 3
4
3
The control vector 1s given by K
1
- o=1.T. . . = T
u ' = -R; B;S,X, ~where X4 [x11 xiZ] (23)
Where S is the symmetric matrix solution of the two dimensional -]
Ricrati“equation:
-S A, - ATS + S.B R-lBTS -Q=0 (24)

ii i1 ii i1

Dbt
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with

0o 1 BL = [0, 1]
A = 1
-Fi —Di R = Ri and Q = Qi

For the second order System represented by Eq.
of Si may be solved in closed form with the results

s, . R
2= R [-F +/FT% Qi{Ri ]

S -

R, [-D +YDI+1 (Q, *2s )]
150 3 i 173 i

i
4 2 12

S, = F,S +0Ds
i, 14, 111,

where the signs of t
definite matrix.

+1 S S

B, T2 1y
he radicals are selected such that §
Then

u' =~ [s s S, ] X
B 42" iy 4

4. Numerical Example

A long flexible free-fr
strate the two gain selection
(Fig. 1) including point actua
based on the assumption that a
within the orbital plane.

tors is taken from Refs. 4
11 rotations and deformatio

The equations of motion are g
T.
d2g P
az + 39 3;3
2 2
LA z =In___
dt? \ ) T M R
c/ n e

n=12, ...

where
8 = pitch angle relative to local vertical
T = wct, nermalized time
z = An/R, non-dimensional modal amplitudes
2 = length of the beam
u =

c orbital angular rate
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After defining
0 = Xl

17 %2

Zh-1 = xn

Equations (29) and (30)

where

R 0
X= A

dg/dt = Xy = X4
dzlldt Xy = Xp40
dzy/de = Xy = Xpq

can be written as

I
0 X+ Bcuc

(31)

T
= [xl, Xgr eees Xs Xoyqs voes x2n] state vector

X
0 = nxn null matrix
I

= nxn identity matrix

-3.0
!

e

with (Ref 5) p actuators

- 1
T, = -3

n
En f1¢z

Then o
&1

Jw?
c

1
42(E,)

of |
~——
/, g

=

0

n-1

c Eg_, 1
wc Mllwz by ! 22

c n-1""¢
located at (El, 52, ooy Ep)

[flk;1 + .. + prp]

(£)

n n
(5)) + £,0,(5p) + ..o + fp¢z o

)

Jw
c

1
$,(E,) 4

[ Z

M¥2wc

' 1
¢n

cee | Tmm—m—
MR W]
t

n-1
G ¢

z
2
Mn-lzmc

M ”Z.UM zg

w
n-1"%c n-1"¢
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Case 1:

located at (-%/,, */,, %/;)

-3.0

A= -3200.0

-28800.0

59.52

Bu = |20.0 20.0 - 2.0 £

cc

-59.52 29.76 f;w

20.0 -20.0 9.3 by

pitch + 2 modes are considez2d in the medel with actuators

3

The gains are selected for decoupling anu critical damping in the
decouplaed modes (only rata feedbackis censidered here since the
uncontrelled system is already dacouplad). The

forces are given by:

fl -0.011
fz = 0.017
f3 0.0602

-2.835 -5.2757

-2.835 3 5171

0.0 -17.5855
i I

required control

Xy
X2

X3

The time response of pitch, nondimensionalized modal amplitudes,

and forces required are plotted in th2 following figures, (Fig. 2).
As the mode number (and frequency) increase the decay time decrezses.
The pitch takes a relatively long tiza to decay since its natural
frequency is very low and only rate izedback is considered here. The
mazimum amplitude of the forces are of the order of newtons for this

£000.0

application.
0.01
IS
s
Q \
el
-U -
s tize t (saconds)
o
<D
<
(3]
RS
hal
£
~-0.01
Tig." 24
Fig. 2. Decoupled Controlled Respoase ~ Pitch + Two ilodes

2

with Three dActuators (=%/5, */,, %/4).
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0.01

250.0

time € (séconds)

AL, (Non-dimensioqulized'

’o-m
Fig. 2B
36.3 10.8
) 7
c =
Q [o]
2 g
8 140.0 3 140.0:
£ time t (seconds) 8 .
o @ time t (seconds)
3] u )
2 3
;.o. v o N
A . e i
. le)
-t L .
L] v
$
-35.3 -10.8 3
Fig. 2C Fig. 2D ¥
4
Fig. 2. Decoupled Controlled Response -~ Pitch -+ Tvwo Modes ;
with Three Actuators (-%/7, £/2, %/4).
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1.8

time t (seconds)

£, (Force in newtons)

U

-

.

[=2]
—

Fig. 2E

Fig. 2. Decoupled Controlled Respecase — Pitch + Two Yodes
with Three Actuators (=%/2, %/2, %/4).

Case 2: pitch + 4 modes considered with actuators locatad at
(_2/2,‘2/4> 0, 2/49 2'/2)

-3.0 0 0 0 0 i
A = 0  -3200.0 0 0 0
0 0 -28800.0 0 0
0 0 0 -93079.50 0
0 0 o 0 -255331.%0 |
and . _— r i
59.52 29.76 0.0 =~29.76 -59.52 flT
20.0 -1.98 =-14.0 -1.93  20.0 c ,
Bu, = 20.0  -11.698 0.0  11.685 -20.0 2 [
20.0  -12.437 14.18 =12.37 20.0 £ j
20.0 -5.1266° 0.0 5.01 =20.0 £, £]
f 3
5| 1
3
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For case 2, the gains are selected using Loth decoupling and an
application of the linear regulator prouslem to the independent modal
coordinates.

Using decoupling (pitch and the first four modes are critically
damped), the control forces ars given by

[, ] [1199  -1.223 -189.03 -7.578 3365.27 | [ %
£, -3.329 0.0  -2183.39 0.0 9392.17 | | x,
£ |z |-2.443 | 4.015 -1620.70 -21.649 6946.89 X4
£, -3.278 0.0  -2200.36 0.0 9397.81 §<4
£, -1.669  -1.423 -780.55  -7.578 3362.45 | _3}5-

o - —

The response to an assumed perturbation of 0.0l in all tae posi-
tion coordinates, including pitch, is shown in Fig. 3. The maximum
amplitudes of forces are of the order of hundreds of newtonms. Fig. 3,
also 1llustrates how the initially deformed beam is straightened out
under the influence of the controllers. It is seen that after 36 secs
the beam is essentially straight, but continues to exhibit a pitch

displacement untél about 4000 secs.
.01

0 (radians)

time t (seconds) 5380

Pitch,

-0.01
Tig. 3A
Fig. 3. Decoupled Controlled Response — 2:tch + Four Modes
with Five Actuactors (=%/2, -%/4, 0, */¢4, 2/2).
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. 208.0 /P‘\\~_h_*
£s

(newtons)

582.0

fl; /\ 1

(newtons)

424.0

f3 //\\“--,_¥
(newtons) //

589.0
(newtons)
204.0

£ [~ lt= 135.0

(newtoni) // ]seconds

Fig. 3F, Time History of Required Actuatcer Forces.

0.08

t= 36.0L—
sec.

t = 27.0L

t=9.0[’\ ) A—J

Normalized Deflection, & = q/2

0.08

]
|
‘-0.08

-——

X =0 x =L

. Right End
(Leit End) Positism along the 3ean (Rig )

i s et anadi

iz. 3G. Bean Deflection with Time.

hi

e

Fig. 3. Decoupled Controlied Respomse - Pitch + Four Modes
with Five Actuators (-2/2, =2/¢, 0, %/4, 2/2)
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The liaear regulator problem s applied tc the system in the decoupled T
(modal) coordinates, where the non-dimensionalized rates are penalized

by a factor of frequency squared as compared with the non-dimen-

sionalized position coordinates. After solution of the five two oW
éimensional matrixz Riccati equations, the actual control. forces are

given in terms of the following gain watrix, \

-0.056 1.582.‘.0.6 0.0 0.0 0.0 <-0.6312 =0.712 -334.52 -4,348 1832.% g

-0.155%- 0.0 0.0 6.9 0.0 -1.7527 0.0 -109.17 0.0 4596.0

-0.1144. 3.548:10-6 0.6 0.3 0.0 -1.2859 2.007 -313.35 -5.02 3473.3 -

-0.1535 0.0 0.0 0.0 0.0 -1.7255 0.0 -11C0.13 0.0 4598.3

=0.0545 0.0 0.0 0.0 0.0 =-0.5142 -0.712 390.27 ~4.348 1531.2

0.0L
o
=1
[»]
i
~
a
Rt
o tine t (seconds)
\/ 5380.0
<
(3]
&
Lal
e
-0.01

Fig. 4A . {

Fig. 4. Linear Regulator Apolication Controlled Response -
Pitch + Four Modes with Five Actuators (-1/2, -La,
0) 2'/4) 2'/2)-
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The response to an assumed initial perturbation of 0.01 in all the
position coordinates js shown in Fig. 4. As the rates are penalized
heavily when compared to the positicns, the controlled systex fre-
quencies are not changed appreciably asnd the damping obtained in the
individual modes is less than critical. The very small numbers ana
zeros (which are in reality < 10 74n the second to fifth columns of
the position feedback portion of the gain matrix) are due to unit
weighting of the positions in the Qq matrix. It can be sho-m that

the forcecs required have a maximum amplitude of the order of thousands
of newtoas. Whencompared +ith Fig. 3, the maximum amplitude of the
forces reguired here are approximately two orders of magnitude larger.
This can be explained by the fact that the model used here jncludes the
third and fourth higher frequency modes, and it has been asgsumed that
all four modes and pitch were initially excited equally.

S. Conclusion

A technique for selecting control system gains based on th2 de-
coupling of the original linear system equations of motion is pre-
sented. This avoids use of modal analysis and does not require sys=-
tem matrices to be symmetric or skew symmetric. When the aumber of
actuators is equal to the number of modes, a unique solution for the
control gains depends on the non-singularity of a matrix baced on
{modal shape functions evaluated at) actuator locations. When the
number of actuators is less than the number of modes and the order of
the system is high, implementation of decoupling control may be limited
by the computational capacity.

The linear regulator problem can be applied to the decoupled modal
coordinates only when the number of actuators is equal to the number
of modes. Otherwise instead of solving n second order matrix Riccati
equations, a 2nx2n matrix Riccati equation has to be solved.
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IV. Comparison with Results Based on Independen’ Modal Control

In Refs. 1 and 2 the control of the planar motion of a long flex-
ble beam in orbit was studied based on the concept of distributed modal
control. The control forces generated based on this conzept provide a
means of controlling each system mode independently of all other modes
as long as the number of modes in the system mathematical model is the
same as the number of actuators. For the case where the number of modes
(N) is greater than the nunher of sctuators (P) independent control of
P modes is possible, and the response of the remaining (N-P) modes
depends on the residual coupling due to the P actuators.

The mathematical model used inRefs.1l and 2 is based on a three-mass
discretization of the Jree-free beam, with two of the masses assumed
to be at the ends of the beam and the third mass at an interior point
which later was selected at the center of the undeformed beam. The
beam was represented by two hinged cantilever-type members consisting
of the end mass connected by (assumed) massless springs which were
responsible for the structural restoring forces (Fig. 1). One of
the results from Refs. 1 and 2 indicates that the beam, represented by
two degrees of freedom, and containing a single actuator at one end, :
when given an initial perturbation, will not return to the equilibrium E
position when the control is based on the concept of independent modal
control. In the present study (Chapter TI), it is clearly shown that 1
a beam with a single actuator at one end and with pitch and two genmeric
modes in the model can be controlled and will return tv ¢ desired unde-
formed alignment with the local vertical.

e v ik B

fy
DA

In an effort to resolve this apparent ambiguity, we will return to
the previously developed discretized model and examine both the con-
trollabilaity and stability of the system when F = 1 < N = 2,

v
g

/ "
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T o
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The linearized r.quations of motion are [Eq. (3.18) of Ref. 1 or
(38) of Ref. 2]:

a b v r'c 0 v F
1 1 v
L =l M e} 3
b a v C ¢ v ,
L 2 L 2 F
- v
where - E?
a=M (1 + mo); b =M+ ¢ = 3w0 Mk (2 +m ) + k 3
and _ 3
M* = o2 /M 4
- ]
=, mO/m %
m = mass of each end mass
mo = mass of interior mass
=
k = elastic restoring constant (=3EI/%3 for assumed :
cantilever members)
Iv-1
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Fig. 1. Three-Mass System configuration
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2 = length of each meuber (one-haif the undeformed peam

length)
Wy = orbital angular velocity
vl,2 = linear deflection of each end mass
Fvl’2 = control forces due to actuators

Eq. (2) can be rewritten as

A
RIS |

o

Lokt

i

A

I g ey

i

¥

,.—w
PORRT LR

[T IS

e e e piipa b

Y1 - - 1 ac -bc Y1 + 1 r a -b Fvl
3 - b2 af- b? | )
Vo -be ac v2 L-—b a FV
2
If . .
itX ViTX3TX
V2 T X2 V2 = X4 = X2
then Eq. (2) can be written in standard state space form as: ,
EN [ o] [x] [0 o] [F
Xy 0 o 1 X1 0 vy
. 0 0 01
X2 X2 1 0 0 F @
-ac be T v
- = + -
x3 aZ-b2 al-b? 0 0 x3 a®-b a =-b 2
< he  _-ac
X4 aZsz 2 —be 0 0 Xy -b a
I _ - L _ ]
Eq. (3) is now written in the form:
x =f 01 x + |0 £
-A 0 B (l‘)
so that according to the controllability theorem, the system represented
by Eq. (4) is controllable if and only if the controllability matrix, C,
associated with the pair of reduced state and control matrices, [A,B],
is controllable._ In this case
: —c(a2+bh2) 2abe
1 a -b , a%-b* 2% +b<
¢= aZ-b? b a ! 2bce _-_c_(a2+b2) (5)
: aZ—p? a® -b?
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n— - " - v s bt D P . NI SRR ’ 57»-’5«“ " - e

o ekinh e G [ YO 4 LT Sadinanil




-5 a] # 0, in general,
C has rank 2 and the system (2) is controllable.

Since Jet [ a -b

If only one actuator is assumed to be present (i.e. sz = 0), then
Eq. (3) can be written

o T r - - o <
-
X1 0 0 1 0 X1 0 Fvl
. 0 0 0 1 0
XZ XZ
~ac be 1 a
57| FF Fw 00 xg | tFW (6)
. be ~ac b
L5, L7 75 0 o] | x,) .
The reduced order controllability matrix is:
C =] a/ (a2 -b2) l’ —c(R+b2)/ (a2-b2)2
-b/ (a% -b2) ' 2abe/(a2-b2)?

and its determinant,

det C = be/(22b2)2 # 0, since in general, a # b.
Thus, the system is controllable with a single actuator present.

The stability of system (6) will now be examined using the parti-
cular control law used in Refs, 1 and 2. The linear equations of motion

(1) or (2) can be transformed into the modal coordinates, q, a.d q,,
and for the case where only one actuator is present have thé form:

QA Ty 0

Gy + Ay, =[(@b)/(@-b)u; = g u, @)
where

A, = o/ (a+b) A, = c/(a-b)

and vl = ql+q2 v2 = ql-q2

Following Refs. 1 and 2, in accordance with the concept of inde-
pendent modal control, the control in the modal coordinates was
selected as

(9)

up = =f19; - 5,9
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Then Eqs. (7) and (8) can be written as:
q + £,4; + (£,41)) 9, =0 (10)

g(f2q1+flql) + q, + Azqz = 0 (11)

The characteristic equation for the system described by Eqs. (10) and
(11) can be developed with the result:

(32+12) (sz+fzs+flxl)- 0 (12)
An undamped mode remains ar frequency /A, and is not affected by the
feedback gains, f) and £f,. After the cofitrol removes the initfal per-
turbation in 9;» in generai, the system will continue to oscillate at

the second(uncontrolled)modalfrequency. The system is unstable about

9 = q, = 0 in the (strong) sense of Routh-Hurwitz where the control

13w for the single actuator has the form of Eq. (9). An exawple is
1llustrated by Fig. 9 of Ref. 2 for this case where f, = f2 = 1.0, and
demonstrates the basic phenomenon of control splllover.

Instead of selecting the control law based on the independent al

control concept, suppose that a coupled rate feedback control law is
employed having the form:

uy =-Klql - K2q2 (13)
Eqs. (7) and (8) can then be expressed as:

9 + Klql + Alql + K2q2 =0 (14)
g Klql + q, + gK2q2 + Azqz =0 (15)
with the associated characteristic equation
4 3 2 =
st + (K1+gK2)s + (A1+A2)s + (A2K1+kng2)s + Alkz 0 (16)

If the rate feedback gains, K, and Kz,are selected to be positive,
the system will be stable about 1.9, = 0 according to the Routh -
Hurwitz criteria, noting that g = (a+b;/(a-b) > 0.

Numerical Example

Following Refs. 1 and 2, the total mass is selected to be 1000 kg,
equally divided between the two end masses and central mass, m

ThUS, - 0
M = 1000 kg
m=M/3 = N
M = mp/m =1
Iv-5
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¥+ = m?/H = 111.11 k3

a = M*(l-ﬁo) = 222.22 kg

b = Mk = 111.11 kg

k = 3EI/23 = 0.18497 N/m for a cylindrical
wrought aluminum tubular beam, 10Cm.
long (L = 22)

w. = 1.115 x 10~ rad/sec

¢ = 0.1862522

A, = 5.5876x10""

A, = 1.67627x10"

g =3
If the feedback rate gains are selected as

Kl = 0.4728

K2 = 0.4000
(such as to produce less than critical damping in each of the two normal
modes) then the roots of the characteristic equation (16) as sclved by
a conmputerized polynomial root - finding routine are:
-6.4019x10 ~*
b -
-8.58139x10™" + § 2.952816x107

-1.670404
verifying the stabili.y of the systenm.

-
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V. General Conclusions and Recommendations

A model is developed for predicting the dynamics of a long, flex-
ible free-free beam in orbit under the influence of control devices
which are considered to act at specific points along the beam. Two
classes of theorems are applied to the system model to establish neces-
sary and sufficient conditions for controllability depending on whether
the system possesses non-repeated or repeated eigenvalues. It is
observed that with a proper selection of the location and number of
actuators along the beam, a lesser number of actuators than the number
of modes in the model can control and stabilize the systen.

o AR R P R D b KN B etk bl (3 wegue

T

After establishing the controllability of the system, control gains
are selected using the following two criteria: (i) decoupling of the
linearized system equations with appropriate state variable feedback;
and (ii) applying the linear regulator problem to the modal coordi-
nates, and thus, selecting gains by solving groups of "n" two by two
matrix Ricrati equations.

The decoupling technique avoids modal analysis and is computa-
tionally simple when the number of actuators is equal to the number
of modes. However gain selection is possible even when the number of
actuators is different from the number of modes. The linear regulator
application described in this report depends on an a priori modal
analysis and the number of actuators must be equal to the number of
modes. When the number of actuators is not equal to the number of
modes the general linear regulator problem can still be applied
and a 2nx2n matrix Riccati equation has to be solved for a system con-
taining n modes.

b o AR o i

24
1
-

The independent modal control concept used earlier for a long
flexible beam modelled by three discrete masses is reviewed for sta-
bility when the number of actuators is less than the number of modes.
For this case, it is seen that even though the system i1s controllable,
it is not stable about the zero state vector (gives rise to a simple
example of control spillover). It is observed that a proper control
law not based on modal decoupling ensures stability of all the modes.

In the present study control and observation spillover are not
directly considered and all states are assumed to be available (noise
free). Selection of modes for the mathematical model is done on an
arbitrary basis. Only point actuators are modelled.

As an extension of this study, control gain selection usinz pole
allocation can be investigated. Model reduction using energy cr
shape of the structure as a criteria may be studied. Distributed
actuators can also be modelled and their effectiveness can be compared
with that of the point actuators. Control and observation spillover
can be taken into account in designing state estimators and reduced
order controller designs.
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Appendix A

Evaluation of Modal Mass (Mn):

The shape function [¢r(x)] of a free-free beam satisfy

1v 4
o =8, (a-1)

d%
(where ¢iV = Ezqz and a similar notation denotes other ordered
derivatives)
with boundary conditions
Te = Attty -
$17(0) = 61" (0) (4-2)
T = Attt
$17(2) = 417 (2)
From consideration of Eqs. (A-1) and (A-2), the shape function is
given by
(A-3)
¢r(x) = cosh Arx + cos Arx -9, (sinh Arx + sin Ary)

where Ar is given by the solution of the transcendental equation

cos A_2 cosh A _£-1 = 0 (A-4)
r r

and
cosh Ap% - cos Ark
c_= (A-5)
sinh A % - sin A2

We have for two different shape functions ¢r’ ¢s corresponding to
A_ and A
T s

= l‘ ”
¢ AL . (4-5)
v _ .y
¢s = XS és (A-7)
Eqs. (A-6) and (A-7) can be combined as
U_ a4y v _ v
¢r¢s (Ar_ls) ¢S ér ¢r ¢s (A-8)




T —— o ——

Integrating (A-8) by parts,

L 2
1 i v
! 4’r¢sd’<’d§-—xg‘)£ log 6z = 6. ¢ Jdax
= 1 [¢ ¢n|_¢v ¢vn_¢ ¢vvc
(A:-AZ) s 'r s 'r r 's
2
+ ¢l ¢;"]o =0forr#s (A-9°

When r = s = n the above integral is defined as modal mass (M_) per
n
unit density per length:

£ .2
Mn/p = [ 2oy dy (A~10)
(o]
2
1 v
= 5w/ o ®n  dX
n o

1 2 L
= 5 [¢n ¢r'1"l =7 ¢ el dx]
1n o [o]

£

=-x%— Fogl et dy (a-11)
n (9] n n
1 L 2

= = ' s - [ X1 1
ig— [¢n o0 lo g o ' 61" dx]
. 2

= g S ¢1'? dx (A-12)
n J

So 1y
= 2 1 re2 _ [ ' _
My g [of + e (60" = 26) ¢'")] dx (A-13)

After substitution for én and its deravatives into LCq. (A-13).
2
Mn =pf dx = p¢.
o
References:

1. R.E.D. Bishop and D.C. Johnson, The Mechanics of Vibration,
Cambridge University Press, 1960, pp. 323.

2. Private discussion with Mark J. Balas.
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Appendix B

The program described in this appendix solves the equations
of the form

% = AX + BU (B-1)

wne
here X is an n dimensional state vector

A 1is an nxn matrix

B 1s an nxm matrik

U i{s a nx1 control vector.
U 1is obtained using state variable feedback

i.e. U =X (B-2)
using (B-2), (B-1) can be written as

X = (A + BG) X

One can either give (A + BG) as a single matrix to the program or A,
B, G as separate matrices. The solution is obtained using the state
transition matrix technique. The plotting 13 incorperated in the pro-
gra using the separare computer algorithm REDOK-PLOT (see program
listing which follows).
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6/6/79 16:22:217

1J03 (READ IV AT 15:20:53) REDOK

!FORT/#/B/E/P/S FORT,LS/L : T - T

JLISTING

c.. ..*(-------0- TWOmenmwme - FDRTRAN STATEMENT coeerereeeToeaesTenw®)

DIVENSION R(10,10),G(10,10),F(10,10)

COMVON/REDDLYS/P(10,10,10),NMC(10),ALPHA(1C),RETA(CLIO) - - -
OIMENSION A(10,10),ETGR(10),EIGIC10),CC11),ATINV(10,10),NAME(S)

CIME%NSION AK(10,10),U(10),DUMMY(1G,105), Z(lOS).FORCE(SpIOS)

DIMENSION X(10),X¥I(10)

catl IvOUT(S,8)

113 WRITEC(R,1)
1 FORMAT(SY,*A MATRIX IN THE EQUN, ¥X=AX+RU’)
C N=D;MENSION OF A’ MATRIX ,NP=COLUMNS OF *8°* MATRIX
. IF NPCP=1 EQUATION IS *X=AX* AND NPCP=0 IF X=(A4+BG)IX*
c CIF NPCPz=1, R AND G MATRICES NEED NOT BF GIVEN
READ(S,2) N,NP,NPCP
2 FORMAT(312)
WRITE(R,3) N,NP
3 FORMAT(2X,’ DIMENSION OF A=’,12,5Y¥, °COLUMNS OF R=* ,T2)
c READING A MATRIXY RPOWWISE
D0 4 I=t,N
READ(S,S) (A(I1,J),J=1,N)
5 FORMAT(RF{C,.0)
a WRITE(R,5) (ACI,Jd),Jd=1,N)
6 FORMAT(2X,10(F10.4,2X))
c READING B MATRIY ROWANISE
1F (NPCP.GT,0) GOTO 1234
V0 7 I=%,N
RE~D(S5,S) (B(I,J),J=1,NP)
7 WRITE(3,6) (B(I,J),J=t,NP)
c READING 6 MATIX OF U=GX ,ROMWTISE
DO 8 I=1,NP
READ¢S5,5) (G(I,J),J=t,N) - =~ -- -
8 WRITE(R,6) (G(I,J),J=1,N)
00 9 I=t,N
DG 9 J=t,N
SUM=0.,0 &
DO 100 %=1,NP 3
100 SUM=SUMAB(I,MI*G(M,J) 3
9 F(I,u)=s5un { 1
D0 1t I=1,N Yf .
11 WRITE(R,6) (F(I,J),J=t,M) P
DO 12 I=t,° p 3
00 12 J=i,M £y
12 (1, 0)=5(1,J)+8¢(L,) i
4RITE(5,138) ;?
13, FORMAT(SX, *MATRIX A=A+RC WHEPE U=CY ‘) ?
-2 b s
B % 3
r L e SR o N e e = ; o ek
{ e _;uxﬂ,“, ot onde et Sl a«&wvwmwkiwahamww.«»-*..‘..»V.,u‘.y‘y,‘-«wuv*‘ N S g “‘:kwh‘,‘m



20

234 CONTTINUE

'001 FOR MAT(S3")

1008 FORMAT(1H1,5«,° RASIC MATRIX PROGRAM?)
2007 FORVAT(&X,* PRORLEM INDENTIFICATION:®,5X,544)

012 FORMAT(1HO,45(1H*))

010 FORMAT(1HO0,S5X,* DETERNIMANT OF THE MATRIX®)

00

011 FORMAT(1HN,SX,* THE INVERSE QOF MATRIX °)

108

7005 FORMAT(1HO,SX,* THE CHARCTERSTIC POLYMOMIAL=-IM ASCENDING POWERR

503

’006 FORMAT(1Y0,5%,* EIGEM VALUZS OF A MATRIX %)
2007 FORMAT(9X,’RPEAL PART’,8X, IMAGINARY PART')
013 FORMAT(6IN)

DO 129 I=i,N
WRITE(8,6) (A(IpJ}0J=1UN)
RASIC MATRIX PROGRAMME

NAME OF PROGRAMME=sIN “A° FORMAT
READ(S,2901) (NAME(I),I=1,95) ,

KEEP A BLANK CARD TO GET ALL OrTIONS OF THE PRCGRAUME

INET=9 PRINTS DETERMINANT- VALUE -~

INV=0 PRINTS INVERSE OF A MATRIX

NRM=0 PRINTS RESOLVENT MATRIX

ICP=0 PRINTS C! ~RCTERISTIC ~OLYNOUTAL

IEIG=N PRINTS EIGEN VALUE®

ISTM=0 PRINTS STATC TRANSITION MATRIX

IF ABOVE PARAMETERD ARE NOT ZERC THEM CORRESPONDING VALUES ARE NOT
READ(S,201 3) IDET,INV,NRM,ICP,IC1IG, STM

WRITE(R,2008)

WRITE(R,2009) (MNAME(I),I=1,95)
WRITE(R,2012)

IFCINDET NE,O0) GOTO 14
D=DET(3,N)
WRITE(R,2010)

WRITE(R,290 3) D

3 FURMAT(1PBE20,7)
IFCIN V NE,0) GOTO 1S
WRITE(R,2011)

CALL STMEQ(A&,C,N,AINV,C,IERR)
IF(IERR,EN,0) GOTO 1S

DO 208 I=1,N

WRITE(8,2003) (AINV(I,J),J=1,N)
CALL CHREA(A,N,C,NRM) -

CALL PPOOT(N,C,EIGR,EIGI,+1)
IFCICP,NE.0O) GOTO 308
WRITE(8,2012) - T )
WRITE(R,2005)

{ OF §*)

NN=N+{

wRITE(R,260 3) (C(I),I-t,NND
IF(IEIG,NE.0O GOTO 35
wRITE(R.2012)

wRITE(R,2006)

WwRITE(8,2007)

00 156 I=i,N

ARITE(R,200 3) ETGP(I),EIGICI)

IF(IST¥,ME,0) GOfO 25

CALL ST4ST(N,4,EIGR,EIGI,IST™)
B-3
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un

OCOOOOOOON (9]

1875

1724
1268

1269
1270

30
a0
80
20
1725

1726

50

13
102
101
10

1271

tesetlovmnnavnrconmecucnmen FORTRAN STAYEMENT el L D 2 2 L T L P ety %

CONTINUE
N=DIVENSION OF A MATRIX

M=CGLUMNS NF B MATRIYX -
NC=DIVMENSION OF FEEDBACK STATES

NWRITE=0 IF PRINIING IS NEEDED .
NPLOT=0 IF PLCTTING IS NEEDED . C e
NSELCT=0 ALWAYS .

T=INITIAL TIME

TMAX=FINAL TIME — - - - - : T s e

XUIN=MINIMUM O SUM OF STATES
READ(S,1575) N,M,NC,NwRITE,NPLOT,NSELCT
FORMAT(212,14,311)- ——= =~ - - = -
READ{S,20) (XI(I),I=1,N}

READ(S5,20) T,TMAX,H,XMIN

IF(NSELCT.GT,0) GOTO 1724 o : - TTTTTs o e

READ(S,20) (ALPHA(I),BETA(I),I=1,N)

N0 1268 I=f,M

READ(S,20) (AK(I3J),J=1;N) - - - - - Tttt e
WRITE(R,080) (XICI),I=1,N\)

WRITE(8,40) T,TMAX,H,XMIN

WRITE(R,40) (ALPHA(I)'BETQ(I)'I=10N‘
WRITE(8,1270)

00 1269 J=1,M

WRITE(8,40) (QK(I,J),I:l,"‘)

FORMAT(2X,*K MATRIX WRITTEN COLUMN WISE®)
IF(NSELCT.GT,0) GOTO 1725

READ(S,80) (NMC(I),I=1,N)

00 39 I=t,N

00 30 J=i,MN

READ(S,20) (P(1,J,K),K=1,u)
FORMAT(2X,1P6E20,7)

FOP~4T(301I1)

F PYAT(BF10,0) - -
20 1726 NML={,N

DO 1726 ANvL=1,N

WRITE(8,40) (P (NMK, NYL ,NMM) , NNzt , N)

NuMN =1

00 10 J=1,N :

X(J)=9,0 TToTEm e e A - - -
b0 101 I=1,N

ABP=ALPHA(LII*T

IF(ABP.GT.IOO.O.OR.ABP.UT.'IOO.O) GOTO 101 - -
D0 102 K=1,N

IF(NMCCI).ER,0) GGTO 13
X(J)=X(J)+P(11J1K)*CXP(ALPRA(I)*T)*COS(BETA(f)*T]*XI(K)
GATS 102
X(J)=x(J)+p(I:JrK)*EXP(ALPHA(I)*T)*SIN(QETA(I)*T)*XI(K)
CONTINUE ot

CONTINUE

CONTINYE

DO 1271 I=t,wv

UlI)=o,0

00 1271 J=t,N

U(I)=X(J)GQK(IpJ)+U(I)

DO 1371 k=q,w
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c.'..

ad
1371 FORCE(K,NMN)=U(K,
IF(NSRITE,GT.0) GOTO 1400
T WRITECB,103) T,(XC3),J=1;NY, CUCI),I=1,M) ° - -
103 FORMAT (2X,1PBE16.5)
1400 CONTINUE
o DO 1272 I=t,N cTT et T = o
1272 DUMMY (T, NUN)=X(I)
SyM=0,9
~=—--pO 70 wu=i,N Tomemme s e
70 SUM=SUMX (MM) xx?
T=T+H
NMN=NMN+1
IF(SUM LT XMIN,OR, T, 6T, THAX) GOTO 50
GOTO SO
60 CONTINUE
CALL FOPEN(1,"DPO:REDOK")
WRITE RIMARY({IN,NC,M
SRITE SINARY (1) ((DUYMY(I,J),J=1,NC),I=1,N)
NRITE AINARY(1) ((FORZT(T,J3),Jd=1,MC),I=1,M)
CALL FCLOSE(1)

siake

‘
FERVE A PN

.

NN

GOT0 11 3
1420 STOP -
END .. -—— T )
B-5
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~1000
1001
10n2

1003
c

1315
65

70
80

35S

SYNTAX IN ERROQ,

71

a0

as
60

90

1S

13

10

OPTRAN STATEMENT

SUBROUTINE CHRE“(A N, C,NPV

LA LA X L 4 LA D F T ¥ ¥ 2 3 3]

THIS SURRJUTINE FINDS THE COEFFICIENTS OF THE CHARACTEPISTIC POLY

NOMIAL USING THE LEYERRIER ALGORITHM™ . .
CO¥MON ZED(10,1,10)

DIME.JSION A(10,10),C(11),ATEMP(10,10),PRODC(10,10)
FCRMAT(1H0,5¥%,
{LVENT MATRIX *)

FORMAT (1HO,S5X, *THE MATRIX COEFFICENTS OF S*,117)
FORMA((1P6E20,7) - -
FORMAT(1HO,d5(1Hx))
REPLACING THR DATA CARD DATA ATEMPIIOO*O 0/
00 1315 I=1,1(C -
DO 1315 J=1.10
ATEMP(I, . ,*-0 n
CALL CR™ ' .:.,N,C) : -
00 65 1=t .

ATEMP(I,: 3 3

00 80 I=t,n

00 80 J=1,wN

ZED(N,I,J)=ATEMP(I,J)

IF(NRM NE,0) GOTO 71t

WRITE(R,100 3)

l‘qRIT:(R'IOOO)

Mz=N .§

WRITE(R,1001) M

D0 35 I=i,N

WRITE(8,1002) (ATEMP(II,,J)Y9J=1,N)

PUMCTUATION MISSING,

DO 40 I=t,N

N0 40 J=i,N

ATEMP(I,J)=ACI,Jd)

DO 10 I=1,N

NNNSN=T

IF(I.EQ.,1) GOTO S5

IF(NRM_NE,0) GOTO 60
WRITE(R,1001) NNN - - - - - - -—
DO 45 J=i,N

WRITE(8,1002) (A’E“P(J K)., K 1,M)
NPSNNN+1 - - - . -
D0 90 II=1,N

00 90 J=t,N
ZED(NP,TII,J)=ATEVP(II,J)

DO 15 J=1,Nm

DO 15 ¥=1,N

PROD(J,X)=9.0

DO 1S L=1,N
PROD(J,X)=PROD(J,K)+(A(J,LI*ATEVP(L,K))
D0 1 3 J=1,N

00 1 3 K=1,N

ATEVP(J,XK)=PPODC(J,K)

" 10 J=t1,0
ATEMP(J,J)=ATEVP(J,JY+C(N=T+1)
RETURM

END

B-6
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PRI TR D L L DL Ll ok il FORTR&N STATEMENT e T T L -t e W - ww o >

SUBROUTINE CHMRGA(A,N,C)
DIMENSION J(11), C(ll)u (10 10) A(IG;LO) D( 300)
NN=N+ ." - - - =ee -
DO 20 I=1,NN as . .
C(I¥=0,0 o
C(NN)=1,0 - . s e ememeem e = - - - -t .- -
00 1“ M:l'N
K=0 .
- L-l - - . me—eee P - - - - © me e = e mme s o ccwrmen =
J(1)=1
GOTO 2 ., .
~JCLI=J L) +8 e mem e m.——- - sesme s em = 0= mmen mEes
! IF(L=-M) 3,5,50
DO 4 I=L,MMm - = omm o memomm o mT - o T - s
I1=1+1 .
b JCIII=J(I)+1
' no 10 I=t,M - - = s T M T T . cee T
D0 10 KK=1,M .
NR=J(I)
NC=J(KK) . . - - - - et
B8(¢I,XK)=A(NR,NC)
K=K¢1
DCKI=DET(B,M) - s - - < T . i
DO o I=1,™4
L=M=T+1
IFCJCL)Y=CM=M+L)) 1,6,50
’ CONTIN UE
Mi=N-M+]
DO 14 I=1,X . ="
{4 C(M1)= C(“l)+D(I)*( 1e 0)**M
RETURN
50 WRITE(R,2000) - - e - - .- - - - -
2000 FORVAT(1HO,SX,* EPROR IN CHREGA )
RETURN -
--END - - .- - eem - .-

o

o
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eoet

FUNCTIOM DET(A,KC)

THIS FUNCTION SUBPROGRAM FINDS THE DETERMINANT OF A MATRIX

USING -DIAGONALISATION PROCEDURE -~ 777~ : . ————— e - s
DIMENSINN A(10,10),8(10,10) -

IREV=0

- DO 1 I=1,KC "TTTae T T el S S
00 t J=1,KC
BC(I,J)=A(I,J) e
DO 20 I=t,KC T sems emsoTmoms T T
K= <
IF(B(K,1)) 10,11,10 Tt L T

- K=K+l
IF(K'KC) 9:9051
IF(I-K) 12,14,51
- DO 1 3 MELKC-T T T - —
TEMP=B(I,M) - :
BCI,M)=B(K,M) 3
,© B(RyMIZTEMP-~— - === 7T e St - w oo
IREV=IREV+1
] II=1+1

T
dpadaed oo L g Lo

I CONTINUE =~
)  CONTINUE
DET=1,
DO 2 I=1,KC
DET=DET#B(I,1) ,
DET=(=1)**IREV*DET - r
RETURN SRR S - L
1 DET=0.0
RETURN
-END s -

- - eseme Gvem Ememsmeeemime MmN o o rn

IF(IT.GT.KC) GOTO 20~~~ T - TrTrTTtT o Tt o ’

00 17 m=II,KC 4

} IF(B(M, 1)) 19,17,.19 .. —— e — 1
) TEMP=R(M,I)/B(I,1) o o i
PO 16 N=I,KC 1

N B(M,N)=B(M,N)=B(I,N)*TEVP S .. - - 1
%

. g
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N W

1002

@~ o e

- 0

i1
12
13
15

16
19

20

21

o4

SUBROUTINE PROOT(N,4,U,V,IR)
THIS SUBROUTINE USES A MODIFIED BARSTOW METHAD TO FIMD THE ROOTS
O0F A POLYNOMIAL,
DIMENSTION A(EO),U(20)'V(ZO);H(21)'8(21);C(211
IREV=IR s
NC=N¢+1 I - -
00 1 I=i,NC
H(I)=A(I)
P=0,0 - -
R3=0,
R=0,
IFCH(1Y) 4,2,4 ) -
NC=NC=1
V(NC)=0,
U(NC) =0, - -
Do 1002 I=t,NC
H(I)=H(I+1)
GOTO 3
IF{NC~-1) S,100,5
IF(NC=2) 7,6,7
Rz=H(1)/H(2) .
GOTO 50 -
IF(NC=-3) 9,8,9
P=H(2)/H(3)
O=H(1)/H(3)
GOTO 70
IF(ABS(H(NC'l)/H(NC))-ABS(H(Z)/H(I))J 10,19,19
IREV=«IREV
M=NC/2
00 t1 I=1,%
NL=NC=1+1
F=H(NL)
HINLY=H(ID)
H(I)=F
IF(Q) 13,12,13
P=0,
GOTO 1S
P=pP/N
0=1./9 :
IF(R) 16,19,16
Rzt .,/R
E=S.,E=-10 - sttt
BINC)=H(NC)
C(MC)=H(NC)
B(NC+11)=0,
C(NC+1)=0,
NP=NC=1
no 49 J=1,1000
DO 21 I1=1,NP
I=NC-11
R(I)=sH(I)+R#«R(T41)
CCIN=S(1)+R*C(I+1)
[F(ARS(R(1)I/~(1))=-E) 50,850,284
IF(C(2)) 23,22,23
B-9
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22

23
30

35

36

49

50

51
52
S3
sS4
70

71

72
73
74

75
80

81
82

76
77

jlowravoamwwrwsraneseae FORTRAN STATEM&NT --n-----------------)

R=R+1

GOTO 30

R=R«B(1)/C(2)" s e s e e e es eeme e T T

DO 37 It=i,NP

I=NC-11

BCI)=H(I)=PaB(I+)=R*B(I+2) 7 ~ ° - « - e -
C(I)s =8(I)=P*C(1+1)=0%C(I+2)

IFIH(2)) 32,31,32

IF(ABS(B(Z)/H(I))-E) 33,33,34 - - T Ehanthieeaaiain -= T

IF(ABS(B(2)/H(2))=E) 33, 33,34

IF(ABS(B(i)/H(l))-E) 70 70 3u

CBAR=C(2)=-8(2) - . il ot T ot v s T

D=C(3)**2=-CRBAR®C (L)

IF(D) 36,35, 36

p P-a - - Py - m v - amewm S =S wees el s - - - - - - - -~ —- —— - —— —— - W—

G=Q*(Q+1,)

GOTO 49

P=P+(B(2)*C(3)=B(1)xC(8))/D - -

Q= =Q+(=R(2)*CBAR+B(1)#C(3))/D

CONTINUE

E=E*10, -

GOT0 20

NC=NC~-1

V(NC)=0,

1€ (IREV) 51,52,52

UCNC)=1,/R

GOTO S3

U(NC)=R

D0 S4 I=1,NC

H(I)=8(I+1)

GOTO ¢

NC=NC=2

IF(IREVY 71,72,72 -

QAP=1,.,/0

PP=P/(Q%2.0)

GOT0 73 - ot - - SRt i

QP=n

FP=P/2,

Fe(PP)ss2-QP— -~ =~ "oooTT T oTT T Tmm T e

IFCFY 78,75,75

U(NC+1)==PP

U(NC)==-PP -~ e mm T T

VI(NC+1)= SQ?T(~F)

VINC)=z=V(NC+1)

GOTO 76 s T - T
1F(PP)Y ”1,80,81

UCNC+1)==S3RT( F)

GOTO 82 - T T T T

U(NC+1)=-(PP/ABS(PP))*(ABS(PP)+SORT(F))

CONTINUE

VINC411=0, -

U(NC)=AP/U(NC+1)

V(NG =0,

DO 77 I=1,N

H(I)=B(I+2)

2
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300
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04
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)0

00
00
80
oo
10

50

$lwonnensersarennennses FDRTRAN STATEMENT ------—--------------)

SUBROUTINE STMST(M,A,EIGR,EIGT, IKNOW)

THIS SURRAUTINE DETERMINES THE STATE TRANSITON MATRIX USING
SYLVESTER*S EXPANSION THEQREM . - T
COMMON CHI(10,10,10)
CO““ON/REDDYllpthAQOo10)pN“C(IO).ALPHA(IO)pBETA(iQ)

DIMEMNSION A(lOn10);EIGR(10),EIGI(IO).SPS(XO'10) o
COMPLEX CA(10p10),CA1(10p10);CAZ(IO,10),TCA(lO,lO),DENOM(IO),CEIG(
110)

IMN=1 R et i R T
FORMAT(1HO,SX, *THE ELEMENTS OF THE STATE TRASITION MATRIX®)
CARMAT(1HO . 5X, *THE MATRIX COEFFICENTS OF EXP(’,1PE13.6,"TxCOSL",
L1PE13.6,°)T?)- "= - ~U T T : e -
FORMAT(1P6E20.7)

FORMAT(1H0.-5%, *THE MATRIX COEFFICIENT OFEXP('.IPE13.61')T*SIN(’rlP
1E13.6,°1T°) - oo T c - T e T T
FORMAT(1HO0,5¥, *THE MATRIX COEFFICIENT OF EXPC*,1PE13,6,"°)T°)
FORMAT({HO,85(1H#*))

IFCIKNOW, NE,0) GOTO B00
WRITE(R,1005)

00 10 K=1,N
CEIG(K)=C”PLX(EIGR(K).EIGI(K))

Do 10 L=i,N
Cﬁ(KlL)-‘-CMpLX(A(KJL)pO.O)

1=1

1F (IKNOW ,NE,0) GOTO 700
WRITE(3,1000)

D0 15 K:i,N

NENOM(KI=CEIG(I)=CEIG(K)

0N S00J=t,N

IF(I=-1) 360,300,400

[F(J=I=1) 110,110,150

IF(J=I=1) 110,150,150

DO § K=1,M

PO 5 L=1,N c s
CA1(X,L)=CA(K,L)

DO 20 K=1,M
CA%(K.K)=CA(K)K)-CEIG(J)‘"'“"" T - T o -t T
D0 20 L=1,M

C&i(KaL)=CA1(KpL)/OENOM(J)

GOTO 500 e T - -
DO 40 X=1,N

NO 40 L=t,M

FA2(K,L)=CAalK, LY ~—  © T o - Tt T
D0 25 X=1,N

CA2(K,K)=CA(K,K)=CEIG(I)

0o 25 L=i,N -
Cﬁa(KaL)=CAZ(K,L)/DENO“(JJ

D0 30 X=1,N

DO 30 L=1,M

TCA(X,L)=(0,0,0,0)

Do 30 M=1,M
TCA(K,L)=TCA(VpL)+CA1(K'”)*CAZf“'L)
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Coveot<omomonccnncncrecmace  FORTRAN
00 35 K:er
D0 35 L=t,N
3s CA1(X,L)=TCA(K, L)
300 CONTINUE
IF(AI“AG(CEIG(I))) QS,SO aS
as IM=] - - T
I=1+1
ALPHA(CIMN)=EIGR(I)
- “BETA(CIMN)=EIGICIY - - —
NMC(IMN) =1
IF(IKNOW . NE,0) GOTO 80t
WRITE(8,1001) EIGR(I)Y,EIGI(I)
801 00 65 K=1,N
DO 65 L=t.N
65 SPS(K,LI=REAL(CAL(K,L))*2,0
00 66 K:l;N
DO 66 L=1,N
CHI(CIM,K,L)=8SPS(K,L)
66 CONTINUE
00 t100 J=i,N
DO 1100 x=1,N
1100 PCIVMN,J,K)=SPS(J,K)
IMN=IMN+1
IFCIKNOW ,NE,0) GOTO ARO2
D0 80 K={,N
80 WRITE(R,1002) (SPS(K,L).,L=t,N)
ALPHA(CIMNI=EIGR(I)
BETACIMN)=EIGI(I)
NMC (IMM)Y=0
WRITE(8,1003) FIGR(I),EIGI(I)
B02 DC 55 K=1,N
D0 55 L=i,N
55 ~ SPS(K,L)=AIMAG(CA1(X,L))*»2,0
00 56 X=1,N
N0 56 L=1,N
CHI(I,K,L)=SPS(K,L) - - ——~
56 CONTINUE
0C 1110 J=1,N
00 1110 K=t ,N-— e -
1110 P(IMN,J,K)=8PS(J,K)

IMN=IMN+1
IF(IKNOW ,NE,0) GOTD 600
b0 85 Kk=1,N
i5 WOITE(B,1002) (SPS(K L).L=t,N)
GOTO 600

0 CONTINUE
ALPHA(TIVYN)=EIGR(I)
RETA(IYN)=0,0 -
NMC(IMNY=1
IF(IKNQW ,NE_,0) GOTO 8n4
WRITE(R,1004) EIGR(I)

04 DN 60 K=1,N
NGO 60 L=1,N

0 SPS(K,L)=REAL(CALI(K,L))
DO 61 K=1,N

STATEMENT
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61

1120

75
600

AL L L L Ll L b dedehadadndedtd FUR?RAM
DO 61 L=t,N
CHI(I,K,L)=SPS(K,L)
CCNTINUE T T
00 1120 J=1,NM
00 1120 K=1,N =&
PCIMM,J,K)=SPS(J,K)- -~ 777~
IMN=IMN 1

IF (IKNQW,NE,0) GOTO 600

DO 75 K=t,N -~ —
WRITE(8,1002) (SPS(K,L),L=1,N)
IF(I.GE.N) RETURN

- I=I+0C e I ey -
G070 700
END
B-14
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5o

o~ wn

10

12

13

14
15

17
16

51
52

Plmrmocnnramawaneeeww FOPTRA'J STATENENT

SUBROUTINE SIMEQ(A,XDUT,KC,AINV,X,iZRR)

THIS SURROUTINE 1+ INDS THE IMVERSE OF THE MATRIX A USING

DIAGONALIZATION PROCEDUPES

DIMENSION A(lo,&g)18(10D10)ox00T(11))x(11)'AINV(JOIIO)

N=t .
IERR=} -
DO 1 I=1,KC

00 § J=1,XC

- = AINV(I,J) =0y s s e e e

BCI,J)=A(I,d)
DO 2 I=1,%C
AINV(I,D)=1, - - LRI L A
XCI)=XNDOT(I)

DO 3 I=1,KC

comP=0, e s -
K=1

IF(ASS(R({K,1))~4BS(COMP}) S5,5,4
coMP=8(K, 1) -

N=K

K=K+

IF(K=KC} 6,6,17

IF(B(N,TI)) 8,51,8

IF(N-I) Si{,12,9

DO 10 M=) ,XKC

TEMP=8(I,“}

B(Ic“)=8(va)

BN, M)=TgMP <ot -
TEMP=ATINV(I,M)

ATNV(I,™M) =8NV (H,M)

AINV(N,M)=TEMP

TEMP=X(T1)

X(I)=XIN)

X(N)=TEMP -

XCI)=xX¢c1y/a(1, 1)

TEMP=3(I,I)

DO 13 Mz21,KC

AINVCI,M)=AaINV(I, MY/7TEMP
8CI,M)=R(I,M)I/TEMP

DO 16 J=1,¥C P = e s
IF(J=-1) 14,16,14

IF(B(I,T))Y 15,16,15
XCJYSX(I)=2(J, I*X (1)

TEVP=3(J, I}

D3 17 %=1,KC

AIMV(G, P Y=ATHY (J, ) =TEMPxYINV(I M) -
BLJ,M)=3(J,NY=TEAr *C (I, M3

CONTINUE

CCMTINUE

RETUIN

mRITE(R,S2)

FOR“AT(&X, TRE ™ATRIX IS STHGULARP 7))
IFEEP=9
RETU®CY
END
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FRE R R PR IR AR R R R R A TR AR AR AR R KRR AR R KA AR A RRATAARNRRRATRRAANIREANRRRRR RN AR Rk kx>

_2/23/79_ 12:12:2?

1JOR [RFAD IN AT {2°9:33]  REDOX-PLAOT PROGPAV
LFORT/A/R/E/P/S FORT LS/L

ILISTING a2

FORTRAN STATEMENT

c ec e tCovmenvorcaonewrnemvus L T R R T ST TS Y S )

o

TN THE DATA CARD /READ STATEMENT NA DECIDES BEGINING OF x AND XDAT
CURVES ,M=0 SKXIPS ALL X~CURVES “A DECICES BEGIMING OF FORCE CURVES
_SXIPS ALL FORCE CURVES, IF N,NS,0 AND M NE,/ DECIDES HOw MaNY FQ

(miim}

DEFLECTION CURVES THEY NEED
DIMENSION DUMMY(10,105),FORCE(S,105),2(105)
CALL _INOUT(2,.8)

caLl FopEM(TT"oPo:psoox")
P NC, MX

((RUVVY (T,J),J=1,NC),1=1,NX)

READ
READ

BINARY (1) NX

8INMARY (1)

READ
cAaLL

BINAWY (1) ((FORCE(T,J),d=1,N0),1=1,¥%X)
FCLNSE(1)

_READ(2,2675) HMA

1275

1277
1288

1276

PN, VR,

TFOPMAT(UI2)
IF(MN,EN,D) GOTO 2676
NC 1274 I={,N

DO 1275 J=1,KRC
2¢J)=0MUY (T, d)
IMAX=Z (1)

—e— - - s a

IMIN=Z (1)
1J=1,MC

00 1276
IF(ZUAY, LT, 2(1J+1)) GOTO 1277

Gorﬁ'iﬁﬁi"" i
ZMAXZZ(TJ+1)

IF(ZMIN,LT, 2(TJ+41)) GOTO 127é

ZAINZZ(TJ+1)
CONTINUE
IF(a35(Zvax),GT,ABS(ZHIM))

GOTO 6378

- — e —————

5378
6379

ZVINZ=LBS(ZNAX)

ZMAX=A8S(ZMIN)
GOTQ 6379 -

COMTINUE
WRITE(R, 1501) ZMAX,ZVIN
CALL PGRIN(N,2)

1274 ¢
2076

1377

CALL PLOX(ZYIN,Z,ZMAX,NC)
CALL °LOGRC(e,N,6.0)
CONTINUE

TCONTLNIE
IF(V,EN,0) GOTO 1410
o 1376 I=t,M

N0 1377 J=1,8C
Z(J)=FORCE(I I
_TMax=7 (1)

TzvIN=zZ (Y

o
R
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FORTRAN STATEMENT

00 1378 IJrk=1,NC

IF(Z“AY.LT.Z(IJK+1)) 6OTo 1379
« GOTO (339

1379 7MAX=Z(1JK+1)

1380 FFZMIN UV 3¢ T35 15 GCTC 1378
ZMIN=Z(IJK+1)
1378  CONTINUFE

IFCAQS(Z“AX).GT.ABS(Z“IN)] GOTO 63R0
ZMAX:ABS(ZMIN)

I
GATO 6331 ]
638C  ZMINZ-ARS(ZWAY)

6381 CoONTINUE

k.
1
WRITE(8,1501) zMax, 241N

3.

1501 FUR”AT]EX,'**ZMAX=',EEO.7. 3!,'**£“IN=’,E?0.7J
CALL PGRID(0,2)

CALL PLOX(ZMIN,Z,Z74AX,NE)
CALL PLOGN(0,0,6.03
1376 CONTINOE
1410 cONTINGE

CALL EXIT

END

L e ERY e

.
K
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Appendix C

The program described in this appendix solves the non-linear
equations of motion of the beam in orbit incorporating the control
laws obtained using the linearized model.

It can plot defluction of the beau at various instants of
time with control and the time history of actuator forces required.

Data cards to be given are explained in the program by means
of comment cards. A listing of this program follows.

-y
N

pacs .,

Tl Len o ok St

h
L TR I T: AY AT SNpey!

1S 4
RIS

N
o,

[
T )

A

P

i

'
.
E
.




......... B N R s Y R s P R e Y NI P R o
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LA REE AR RS RS 2R Y Y R R SR I RIS FIL RS L LR LR R R

6/7° 15:33:8 - ‘

‘0B [READ IN AT 1S5:32:16) NON~LINEAR

ORT/A/B/E/P/S FORT L8/L = ~==--- == = === - =« = s
ISTING

oo .Q(-c---------uo----.-- el FOPTQAN STATEMENT oo EoeaeserRYTeeeweemed

EXTERNAL FCT,0UTP
COMMON/REDD/AOMEGA(10),0AMP(10),WC,NMODES,LNEAR,NACT,MSELCT, ISTATE
COMMON/RED/Z2(10,20)

COMMON/REDDO/FRENB(30),Q(2"), NPONTS AL (20),1SELCT, NPLOT NWRITE
COMMON/RAG/OMAX L ,AMINT -
COMMON/REAM/PTITCH(I00) ,NPK,QSVALL
CO““OV/QEJA/AK(Srlo):F(S !00),FF(100)

COMMON/KIV/IMULT - - - - -

DIMENSTIOM Y(20),DERY(20),AlIX(8,20),4(¢8),B(u),CCL),PRMT(S)

DIMENSION SIZE(10)

CALL INNUT(S,R) -
41 CONTINUE

CALL PLOGO(0,0,6.0)

QMAX1=0,9

NPK=0

G¥INt=0,9

wC=0R3ITAL FROUENCY,TOL=TOLRERANCE FOR RUNGE-XUTTA SUBROUTINE,

QSMALL=SMALLEST VALUE OF DEFLECTION ALONG THE BEA™ TO STOP PLOTTIN

SIZE(I)=MAXIVUM VALUES OF STATES FOR RUNGE=KUTTA RQUTINE

AOMEGA(I) __ FRAUENCY VALUES

PRMT(1)=INITIAL TIME, PRMT(2)=FINAL TIME,PRMT(3)=INCREMEMNT

Z(M,N)=FEENRACK GAIN MATRIX

FREGII)__FREBUENCY VALUES-- - - - .-

AL(T)___POSITIONS ALONG THE BEAM AT WHICH DREFLECTION IS CALUCULATE

READ(S,9900) wWC,TOL,QSMALL

NSELCT=0 IF DEFLECTION PLOTS ARE NEEDED AT QONE PLACE OTHEPWISE ONE
NMODES=NUMRER OF MQODES CONSINERED INCLUDING PITCH

MPONTS=\IMBER OF POINTS--ALOMG THE-BEAM -
ISELCT=TIME INTERVAL SELCTION OF PLOTING

NPLOT=1 IF PLOTTING IS NEEDED OTHERWISE ZERO

MARITE=1 IF wRITING IS MEEDED OTHERWISE ZERQ

NLNEAR=Y IF EQUATIONS ARE NON LINEAR OTHERWISE ZERO
ASYALL=QUANTTITY DEFINING THE SMALLEST MAXIVUM DEFLECTION OME ANAMTS
TQ PLOT (DEFINING PRACTICAL ZERQ)

MACT=NUMEER QOF ACTUATNRS

NACT=0 THEM DATA CARDS FOR aK(I,J) MEED NQT RE SUPPLIED

CCONTRQOL FOPCES CAN MOT BE PLOTTED IF NACT=0

ISTATE=NO, OF, STATES CONSINERED FOR FEEDRACK

SEAD(S,9014) NMODES,MPONTS, ISELCT,NPLAT,NARITE,MUNEAR, MACT, NSELCT
1, ISTATE, TMULT
IKK=2 ¢MMODES

1 T, . >
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c....

9000
9003
9004
9005
9006
9007
9008
9011
9123
9001

108
s014

9031

9030
9037

013

Sou2

9016
9017

9015

$wvmvovvsivvoaccunenvene FOQTRAN STATEMENT P T T Y T L P T 3]

FORMAT(3F10,0)

FORMAT (2%,12,2(E13,6,2X)7/)
FORMAT(2%X,6(E13,6,2%X)7)
FORMAT(S0X, "SIZE VALUES®)
FORMAT (50X, *FRGUENCIES”)
FORMAT (20X, PAPAMETERS:INITIAL TIME,FINAL TIME,INTERVAL®)
FORMAT(S0X, *IMITIAL VALUES®)

FORMAT (20X, *Z-BOTTOM PART QF A=MATRIX?)

.

* FORMAT(S0X, *NUMBER OF BISECTIONS®,I2) - - N

FORMAT(8F10,0)

READ(S5,9001) (STZE(T},I=1,IKK)

READ(S,9001) (AOVYEGA(I),I=1,NMADES) -
READ(S,9001) (PRMT(1),I=1,3)

READ(S,9001) (Y(I),I=1,IKK)

C3 108 M=1,MMQDES T -

READ(S,9001) (Z(M,N),N=1,TKK)
FORMAT(212,14,612,18)

* READ(S,9001) (FREQ(I),I=1,NMODES)

READ(S,9001) (AL(1),I=1,NPONTS)
WRITE(B,9031)

FORMAT (10X, *VALUES OF X MATRIX®)
IF(NACT,ER,0) GOTO 9037

D0 903n I=1,%MACT

READ(S,9001) (AK(I,J),J=1,ISTATE)
WRITE(S,9004) (AX(I,J),J=1,ISTATE)
CONTINUE

WRITE(3,9043) NVODES,#C,TOL
WRITE(8,9005)

WRITE(R,200d) (SIZE(I),I=1,IKK)
WRITE(8,%00¢4)

WRITE(R,900¢) (20EGA(I),I=1,NMODES)
WRITE(8,9007)

WRITE(8,9004) (PPMT(1),I=1,3)
WRITE(8,9008)

WRITE(R,9004) (Y(I),I=1,IKK)
WRITE(R,9011) T

DO 9013 M=1,NMODES

WRITE(R,9004) (Z(Y,N),N=i,IKK)
CONTINUE

JF(NSELCT.EG,1) GOTO 9042

CALL PGRID(0,2)

CONTINUE

CALL RKSCL(IKK,SIZE,DERY,TOL,PRMT)
CALL RXGS(PRMT,Y,NDERY,IKK,IRLF,FCT,0UTP,AUX)
PMAX=RITCH(1) h
PYINSPITCH(1)

DN 901S IL=2,NPK
IF(PVAY LT, PITCH(IL)) GOTO 9015
GOTO 9017

P~AX=PITCH(IL)
IF(PYIN LT PITCH(ILY) GOTO 9015
PMIN=PTITCH(IL)

CONTINYF
IF(ARS(2*aAY) GT ABRS(PMIN)) GATO 9INtA
PMAXZAQS(PMIN)

Y S RW S
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GOTO 9019 -
3018 PMINzapujY Ji
7019 CONTINUE - .- . - . e I
WRITE(8,9020) PMAX, PWIN ’ ‘g
7020 FORMAT(10X, *#*PMAX=*,E13,6,5X, ' *+P4INZ*,E13,6) LN o
IF(NSELCT.EQ,!) 6070-9003--- ————— - — et e ‘g
CALL PLOGO(0,0,4.75) .
3043 CALL PLOG0(0.0,1,25) i
CALL PGRID(0,2)- - cm— e ol - . :

CALL PLOX(PMIN,PITCH,PMAX,NPK)
WRITE(8,9123) THLF
FFMAX120,0 --— - S ee— o e T p————
FFMIN1=0,0 14
IF (NACT.E9.0) GOTO 9036
DO 9021 I=§,NACT
DO 9022 J=1,NPK
1022 FF(J)=F(1,J) :
FFMAXSFF(1) - - e e - - - - - ;
FFMINZFF (1) ~
DO 9023 II=1,NPK

M

4
IF(FFMAX,LT.FF(II+1)) GOTO 9024 K
GOTO 9025 E
024 FFMAXSFF(II+1)
025 IF(FFMIN.LT.FF(IT+1)) GOTO 9023 N

FFMINSFF(IT+1) 3
023 CONTIMUE A
IF(ABS(FFYAY) ,GT,ARS(FFMIN)) GOTO 9026 -
FFMAXSABS(FFMIN) '
GOTO 9027 _
026 FFMIN==ABS FFMax) - - E
027 CONTINUE -,
waxrste.qoSS) FFMAX,FFMIN 3 é
035 FOR“AT(2X, *FFvax-',E13 b6,5X, *x*FFMIN=",E£13,6)
IF(NSELCT.EQG.1) GOTO 9044
CALL PLOGO(0.0,4,75) ”
044 CALL PLOGOC(0.0,1.25) -- - .
CALL PGRID(O0,2)
CALL PLOX(FFVMIN,F™,FFYAX,NPK)
021 CONTINUE R —--- -
WRITE(R,9033)
)33 FORMAT(2X, *VALUES OF FORCES STARTING AT TMIE=0,0*)
DO 9032 J=1,NPK S — -

Ll ad
P
s
RN

R

332 WRITE(R,9004) ( F(I,J),I=1,NACT) L .
Y36 CONTINUE ]
GOTO 904t -
Y40 CONTINUE
sSToP )

El]o E:
ISTATE=ND, OF, STATES COMSIDERED FOR FEEDRACK :

READ(S,9014) MVODES,NPONTS,ISELCT, NPLOT,NARITE,MLMEAR,NACT , NSELCT
1,ISTATE, IMJLT
IKK=2«\N0NES
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10

SURROUTINE FCT(X,Y,DERY)
COMMON/REDD/AOMEGA(10),DAMP(10),WC,NMODES,LNFAR,NACT,NSELCT
COMMON/RED/Z2(10,20)

COMMON/REJA/AX(S,10),F(S,100),FF(100)

COMMON/KIM/TIMULT

DIMENSION Y(20),DERY(20),AUX(8,20),A(C4),B(U),C(L),PRMT(S) -
IF(NLNEAR,EQ,N) GOTO 14

Z(1,1) =1 ,S*SIN(2,xY (1))

DO 10 1=2,MMODES
Z(IoT)=w((AOMEGACI) ) 222/ (WC#*2) = (3 *#((SINCYC1)))#%2) =], )=( (Y (NMODE
1S+1)/%C=1)x%2}))

CONTINUE

GOTO 15

Z(1,1)==3,0»Y(1)

00 16 I=2,NVMODES

Z(Is1)==(AOMEGA(I) )% +2/(WCx%2)

CONTIMNUE

DO 11 I=1,NVQODES

DERY(I)=Y(1+MMODES)

PITCH ERUATION

NKC=NVODES+1

DERY (MKC)=Z(1,1)+Z(1,NKC)*Y(NKC)
NO 12 1=2,NMOLES

I1J=1+NVONDES

IK=2%xNMADES

DERY(11)=0,0

00 13 J=i1,1K
DERY(TJISDERY(IJI+Z(I,J)*Y(J)
CONTIMNUE

CGNTINUE

RETURN

END ot
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SUBROUTIME QUTP(X,Y,DERY,IHLF,NDIM,PRMT)

LOGICAL RKNXT
COMMON/REDD/ACMEGA(10),DAMP(10),WC,N“CNES,LNCAR,NACT,NSELCT, ISTATE
COMvVOM/REDDO/FREQ(10),0(20),NPONTS, AL(20), ISELCT NPLOT,NWRITE
COMMON/RAJ/QMAY Y (AMINY

COMMUN/BEA“/PITCH(loO) NPK,QSMALL

COMMON/REJA/AK(S5,10),F(5,100),FF(100)

COMMON/KIM/IMULT

DIMENSTION Y(20),DERY(20),AUX(8,20)7A(4),B(U),C(8),PRMT(S) =~ - - --——-
IF(NOT RKNXT(IHLF)) GOTQ 2

IF(NWRITE.EQ,0) GOTO 13

WRITE(8,901) X,(Y(I),I=1,NDIM) o : it

FORMAT(2X,F10,3,6(E13,6,2%))

CONTINUE

1JK=2*NMODES - e e N : -

ISS=ISTATE/2

IF(NPLOT.ER,.0) GOTO 12

IMULT=TVULT+t - : : - : : T

IF(IMULT.ER,1) GOTO 1?1

IX=IMULT/ISELCT

IM=IX+ISELCT : -

IFCIM,EQ, IMULT)Y GOYO 1t

GOTO 12

CONTINUE

NPK=NPK 4+

PITCH(NPK)=Y(1)

IF(NACT ER,.0) GOTO 16

D0 14 TAC=i,NACT

FCIAC,NP¥)=0,0

nn 1s Jx=1,188

F(IAC,NPK)=F(IAC,NPK)+AK(TAC,JK)+Y (JK)

CONTINUE

D0 19 JKN=1,1ISS

FCIAC,NPX)=F(IAC,NPK)Y+AK(IAC,JKN+ISS)*Y(JKN+NMODES)

CONTIMUE

CONTINUE : - Tttt o

CONTINUE

DO 4 J=1,NPONTS

2¢J)=n,n comme e

DO 3 I=2,NMODES

COSHA=(EXP(FREQ(I})I+EXP(~FREQ(I))) /2.

SINHA=(EXP(FREQ(I))=EXP(=~FREQ(I)))/2, T

COSHwWL=(EXP(FREA(II*AL(J))+EXP(=-FRER(I)*AL(J)))/2,

SINHaL=2(EXP(FREQ(I)*AL(J))=EXP(=FREQ(TI*AL(J))})/2.

QUP{=(COS(FREN(I))I=COSHW) /(SINHW=SIN(FREQ(I)})

DUP2=STN(FREG(IV*AL(J)) $SINHWL

DUP3=COS(FREG(I)*AL(J))+COSHWL

DUP=DUP1 *DUP2+DUP3 -

0(J)=0(J)+Y(I)»DUP

CONTINLIE

CONTIMUE

oMaAX=9(1)

NMIM=0(1)

N0 S M={,MPONTS
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IF(QvAX LT . A(M+1)) GOTO 6 .
GOTO 7 s

OMAX=N (Ve l) - - -
IF(OMIN,LT,.Q(¥+1)) GOTO S

AMIN=Q(M+1)

CONTINUE

WRITE(8,1A) OMAX,QGMIN

FORMAT (20X, “GMAX=’,E13,6,'QVYIN=*,E13,6, *xIN THIS CASE’)
IF(ABS(AMAX) ,GT,ARS(AMINY) GOTO 8
OMAX=BRS(GMIN)

GOTO 9

QMIN==ARS(AvMAX) -

CONTINUE

IF(ABRS(AMAX) ,LT,O0SMALL) GOTO 12
IF(GvAX,GT,0MAY1) GOTO 1910

QMAX=QMAX ]

QMINz-gMAX

GOTO 191t

QMAX1=AMAYX

CONTINUE

WRITE(R,10) GVAX,QMIN

FORMAT (10X, **#Q%AX=*,E13,6,5X%, *#*0MIN=*,E13.6)
IF(NSELCT,EN,0) GOTO 17

CaLl PLOGN(0,0,1,25)

CALL PSIZE(R,0,1,.0)

CALL PGRINDC(0,2)

CONTINUE

CALL PLAX(NMIN,Q,QVAX,NPANTS)

COMTINUYE

CONTINUE -

RETURM

END
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