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ABSTRACT 

The equations of planar motion for a long, flexible free-free 
beam in orbit are developed and include the effects of g:-avity
gradient torques and control torques resulting from point actuators 
located along the beam. The actuators control both the orientation 
and the shape of the beam. Two classes of theorems are applied to 
the linearized form of these equations to establish necessary and 
sufficie~t conditions for controllability for preselected ac~uator 
configurations. It is lJeen that the D~er of actuators, if pro
perly located, can be less than the n~b~r of modes in che ~odel. 
After establishing the controllability of the system, the feedback 
gains are selected: (1) based on the decoupling of the original 
coordinates and to obtain proper tiamping and (ii) by applying the 
linear regulator problem to the individual modal coordinates sepa
rately. The linear control laws obtained using both tpchniques 
are then evaluated by numerical integration of ~he nonlinear system 
equations. Numerical examples are given considering pitch and vari
ous number of modes with different combination of actuator numbers 
and locations. The independent modal control concept used earlier 
with a discretized medel of the thin beam in orbit is reviewed for 
the case where the numb~r of actu3tors is less than the number of 
modes. It is seen that although the system is controllable it is 
not stable ab~ut the nominal (local vertical) orient&tion when the 
control is baRed on modal decoupl~ng. An alternate control law not 
based on ~odal dccoupling ensures stability of all the modes • 
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I. Introduction 

The present gr&~t represents a r.ontinuation of the effort attempted 
in the prev10us grant year (May 1~/7 - May 1978) and reported in Refs. 
1 and 2.* In Ref. 1. a discretized planar model of a free-free beam 
in orbit was developed assuming the beam to be represented by a max
imum of three point masses connected by idealized springs which ac
counted for the structural restoring effects. First order effects of 
gravity-gradient torques were included. It was asp~eJ that two of 
the discrete m4sses were at the ends of the beam and that the third 
mass was at an interior position. later taken to be at the middle. when 
the beam was undeflected. and along the local vertical. Control wa~ 
assumed to be realized by the action of one or two a~tuators located at 
the ead masses. and implemented according to the concept of distributed 
modal control. 3 According to thIs concept. air~ct independent control 
in each mode considered is possible when the nunber of actuators is 
equal to the number of modes in the system model (neglecting the effects 
of higher modes not included in the reodel); when the number of actuators 
(P) is less than the number of wodes (N) direct control of P modes m2y 
be lmplemented by p~oper selection of control law gains and the remain
ing N-P modes are effected acrording to the residual coupling in the 
control influence matrix ar'.:ording to the gains selected for the P 
actuators. 

In Ref. 2. a mathematIcal model of a long, flexible free-free beam 
in orbit was obtained using the formulation developed by Santini4 (in 
modified vector form) which develops the general equations of a flexible 
spacecraft in a gravitational fiald. The motion of a generic point in 
the body is described as a superposition of rigid body motion plus a 
combination of the flexible structural modes. The beam's center of 
mass was ~ssumed to follow a circular orb!t, the beam considered to 
be long and slender (shear deformation and rotational inertia effects 
neglected), and the axial deformation was assumed much smaller than the 
lateral deformation due to bending. In kef. 2, the emphasis was placed 
on th~ analysis of the uncontrolled dyr.amics of this system where motion 
was restricted t~ occur only within the orbit plane; the equations of 
motion consisted of: a single equation describing the i~ plane (pitch) 
libration (rigid body rotational mode) and "n" generic modal equations 
expressed in terms of the vibrational modal amplitudes as the variables. 
for planar motion with only flexural vibrations, it was seen that the 
pitch motion was not influenced by the be~~'s elastic motion. 

*For references cited in this report, please see reference 
list after each section. 
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For large values of the ratio of the structural modal frequency to the 
orbital angular rate, the cl~stic ruotion and pitch were decoupled; for 
small values of this ratto, the elastic motion was found to be governed 
by a Hill's three-tern ~quation which could be approximated by a Mathieu 
equation, and the resulting stability considered by means of a Mathieu 
stability chart. Numerical simulations verified the possibility of 
vibrational instability for very long flexible beams in near-earth 
orbits. 

In this report the control of an orbiting beam based on the 
continuum model of Ref. 2 with point actuatocs along the beam is ex
amined. The format adapted in preparing this report is as follows: 
Two papers to be presented at the following conferencas respectively, 
form the bases for Ch'lpters II and III: 

1. Second AIM Symposium on ny:.amics and Control of Large 
Flexible Spacecraft, June 21-23, 1979. Blacksburg, Va. 

2. 1979 AAS/AIAA Astrodynamics Conference, Provincetown, Mass., 
June 25-27, 1979 (only the contributions by A.S.S.R. Reddy 
and P.M. Bainum are included here). 

The first paper is concerned mainly with the modelling of point 
actuators. controllability conditions for a preselected set of actua
tors and a sample numerical case with one actuator and pitch plus two 
modes in the model. The se~ond paper describes two control gain se
lection t~chniques using state variable feedback. The first technique 
uses decoupling of the original linearized equations of motion as a 
criteria to select gains and the second one applies the linear regu
lator problem to the system equations expressed in the independent 
modal coordinates. 

In Chapter IV the independent modal control concept as apolied 
to a discrete model of the orbiting beam developed earlier. l is 
reexamined according to controllability and ~tability considerations. 

References are given separately for Chapters II. III, and IV. 
Symbols are defined in the text when and where they are used. 

Chapter V describes the general conclusions together with recomen
dations for future work. 

The introductions of Chapters II and III provide further details 
of the state of the art of beam modelling with relevant references. 
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II. On the Controllability of Long Flex~ble Beam in Grbit. 

Abstract 

The equations of planar motion for a long, flexible free-free beam 
in orbit are developed and include the effects of gravity-gradient tor
ques and control terques resulting from actuators assumed to be located 
at specific points along the beam. The control devices are used to 
control beth the orientation as well as the shape of the beam. Applica
tion of two classes of theorems to the linearized ~orm of these equations 
is used to establish necessary and sufficient conditions for controllabil
ity for different combinations of number/location of actuators with the 
number of modes contained in the mathematical model. It is seen that 
the number of actuators, 1f properly ]ocated, can be less than the num
ber of modes in the system model. A numerical example illustrates the 
controlled response to an initial perturbation in both pitch angle as 
well as beam shape. 

1. Introduction 

Large, flexible space systems have been proposed for future use in 
communications, electronic orb1tal-based mail systems, and as possible 
collectors of solar energy for transmittal to power stations on the 
earth's surface. l ,2 Because of the inherent size and necessarily low 
weight to area ratio, the flexible parts of such systems become increas
ingly important and 1n some cases the ent~re system must be treated as 
being non-r1gid. For mFeting the requirements of these (and other) pro
posed missions, it will often be necessary to control both the geomet
rical shape as well as the orientation of the configuration. 

Previously the forculation of the dyndm1cs of a general flexible 
body in orbit was prov1ded by Santin1. 3 As a specific example, the 
equations of mot1on for ~n un~ontrolled long, flex1ble uniform free
free beam in orbit were developed uS1ng a slightly modified version 
of the Santini formulat10n. 4 The mot10n of a g~ner1c point 1n the body 
was described as the superpos1cion of r1g~d body mot10n plus a combina
tion of the elastic modes. Fur.::her it ~JaS assumed that the system center 
of mass followed a circular orb1t and that the p1tch (rotat10n) and flex
ural deformations occurred w1th1n the orb1tal plane; also the elast1c 
mot~on was assumed to be the result of only flexural v1bra~ions. 
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The equations were linearized about a postion of zero structural defo~~ 
tioD and alignment of the beam alnng either the local vertical or orbit 
tangent. It was seen that, in the absence of control, for small ampli
tude pitch, the pitch equation ~as uncoupled from the generic modal equa
tions and that the generic modal e~uations were dynamically coupled with 
pitch only through a second order velocity term. Numerical simulations 

·verified t~e ~ossibili~J of vibrational instability for very long flex
ible beams in near-earth orbits. 4 

In the present pape~ the uncontrolled system considered in Ref. 4 
will be modified to include the effect of actuators located at specific 
point locations along the beam (Fig. 1). The modelling of actuator 
forces will be res~rtcted to the case wnere the elastic displacements 
remain small as compared with ~ypical beam dimensions of the order of 
hundreds of meters. For preselected sets of control devices (number and 
location) and the total number of modes in the system model, cont~ollabi
lity conditions will be examined and some repres~nt~~ive numerical re
sults showing the ~ontrolled response of an initially perturbed system 
will be discussed. 

Z, 1; 

outward local vertical 

-JI. 
o( 2' 

o(x,t) = ~ A (t) ¢n(x) 
n n 

. O(i, t) 

Figure 1: Beam Configuration with First Hode Deflection and p 
Actuators. 

2. ~~thematical Modelling 

A. Equations of Hotion for a Thin Beam in Orbit 

The equations of motion for a thin homogeneous uniform beam whose 
center of ~ass is assu~ed to follow a circular orbit have been developed 
in Ref. 4. For the case where all rotations and transverse elas- . 
tic displacements are aS5u~ed Lo occur wit~in the.plane of the orb~~, 
and where the earth's gravitat10nal f1eld 15 con51dered to be 5~heL1cal1y 
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CONTROLLABILITY OF A LONG FLEXIBLE BEA}1 IN ORBIT 

symmetric, these equations can be reduced to (Eqs. (24) - (25) of Ref. 4): 

where 

(de _ w )2J A = E 1M dt c n n n 

aCt) represents the pitch angle between the undeformed 
longitudinal axis and the local vertical 

th A (t) is the modal amplitude of the r>-- generic mode n th 
wn is the n-- modal natural frequency 

is the orbital angular rate 
is the external pitch acceleraticn, Np/J 
is the effect of ~xternal forces on the ~ 
generic mode 

M 
n 

th is the generalized mass of the beam in its n-- mode 

(1) 

(2) 

It was further assumed that all elastic dis?lacements are small as compared with the beam lengtl!. It can be concluded that there is no first order i~fluence by the elastic mot1on on the rigid body pitch mo.ion, but that the pitch motion affects the elast1c motion due to higher order coupling. When the ~atio of structural modal frequency to orbital rate is amall and the pitch ampl.tude is small, 1t is shown4 that th~ uncontrolled elastic mot10n can be approx1matedbya~thieu equation, and with t: ~ ai~ of a Mathieu chart parametric 1nstability regions can be readily 
id~ntified • 

For the development of the actuator modelling and subsequent co~sideration of coptrollabi1ity, Equations (1) and (2) will be linear1zed, and time and length will be nondL~ensionalized according to 

T W t 
c 

Z = A Ii n n 

where i = length of the undeformed r=am. 

The resu1t1ng l1nearized system equations are: 

E 1M £w2 
n n c n = 1, 2, •.• 

II-3 
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~.M. 0AINUM M~D A.S.S.R. REDDY 

By defining 
de/dT '= X = Xn+l 

and 1 

dZ/dT = Xz = Xn+Z 
I 

dZ l/dT = Xn = X2n D-
z = X n-l n 

~qs. (5) and (6) may be written in the standard for~: 

x + B U 
c c 

(7) 

(8) 

where T 
X = [ Xl' XZ' ••• Xn' Xn+1 , ••• XZn] , statE' vector 

0 rom null m.::.trix 

I nxn identity matrix 

AT (wl/w )2. ..... 0 1 (" .... 
I 

0 
~ .... , 

I ... 'w J L \ n-l/w ~ 
c 

B r ~ , 
c LI J 

U [T /w 2., El/Mltw~ , E lIM ltw2.JT c P c n- n- c 

and represents the contrc:'l vector 

B. M':ldelling of the Po~nt Actuators along the Bpam 

It is assumed that p actuators be located along the beam at po~nts 
~l' ~Z' •• ~P' where ~ lies along the beam's undctorc~d longitu~~nal 
axis and t; = 0 corre',ponds to the mass center of the undeformed beam. 
The actual control [urc~s assoc~ated with these 2~~uato~s w~ll be 
de:sig.:ated f1' f2' ••. fj ••• ~,resIJect~vely. For small elastic 
d~splacements the component of the control force, fJ' parallel to the 
~ ax~s ~s very small and the component parallei to the ~ dxis ~an be 
approximated by f , . Thus the control torque due to the j th a~tuator 
may be expressed by -

N = f ~ x f dm 
Pj J 

(9) 
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l.UNIKULLollilLITY OF A LONG FLE:UBLE BEAM IN ORBIT 

wh::.re 
'\, 

k fj O(f.-f;j) 

r .. ~j i + qj (~j) 

= 1: 
n=l 

<?n (~) A (t) k 
z n 

and n <? is the z th component of the moc:l1 shape 
z -function corresponding to the n th mode 

After integration there results 

N .. -I fj~' x(const for a uniform beam) 
Pj J 

(10) 

:r'or convenience the CO:lstant will subsequently be incorporated into 
f j • It is then clear that for p act~ators, 

N = E N :2 -I [fl£;l + f 2;2 + . • . + f £; ] 
P j Pj P P 

(11) 

and that this lerm div~ded by t~e pitch ax~s moment of inertia, J, 
vrovides t'le control acceleration for the pitch motion. 

For the generic modal equations the control forces can be trans
formed in~~ the corresponding mOGal forces by3,4 

- n -= I 41 • f dm 
J 

(12) 

Under the assumptions previously stat~d, 

(13) 

As before, I-he co.,stant will be incorporated int:o fj so that the effect 
of all p th:u~ters on the n th generiL mode can ~e expressed by 

(14) 

The control vector, U • can now be related to the actuator forces, 
ac':uatcr loc.?tions, agJ D':(Jdal shape fun-:tions by 

II-5 
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ruep 

f
fl 

f2 
I 
I 

, I 

If 
I P 

L 

If the rue~ matrix app~~ring in Eq. (15) is denoted by Bact' then 
Eq. (8) may be expanded in the fol10wing form: 

I 

nxn 

o 
nxn 

r ~p 
r-

I , 
+ 

lB
act i 

ruep I 
L 

£1 l 
f I 

2 I 
' I I 

I ~ 
p I 

.....! 

v 
'1 

X2 
I 
I , 

I I J L X2n 

(16) 

The modal masses appearing in B t can be evaluated for ho~ogeneous 
free-frep. beams and sh~wn tJ beaindepend'nt of the mode number. 5 ,6 
Specifically, i:i; - 01 where R. is the undeformed length and p repres~nts 
the mass density per .~it length. 

1. _C:ontrollabili t:i: 

A. Statement of the C ... r.trullability Theorems 

Eq. (16) can be written as 

. 

G: ] rO r X I X + 
(17) 

0 LB 
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'Where 

CONTROLLABILITY OF A LONG FLEXIBLE BE!J1 IN ORIHl 

x - T r Xl' X2, ••• Xn, Xn+l' ••• X2n] 

I - ~xn identity matrix 

B .. 

f -

The system representee by Eq. (17) is controllable if the pair 
[~,D] is controllable7 - Le. it c.'n be proven that the controllabi
lity matrix associated with the origin~l state and control coefficient 
matrices r 0 

I -A . ~l -has rank 2n if and only if the controllability matrix associated with 
lhe paIr of reduced state and control matrice~, 

[A • B) 

has rank n. 7 

Furthermore, if the matrix A has eigenvalue3 of unit multiplicity 
(i.e. non-repeated E_Jenvalues), the system given by Eq. (17) is cOn
trollable if and only if ~~~h row of B has a non-zero entry.7 

For the case where A has repeated eLgenvalues (multIplicity greater 
than o~a), the reduced order state matr~h, A, can be written in Jordan 
block matrix form. If the e~genv~lues A~, A2 ••• Am have multiplicity 

J- m 
of nl, n2' ••• nm, respectively, with i~a ni .. n, then A can be trans-
formed as 

r J nl 

J 
n2 I , (18) 

\ 

~nmJ 
where r \~ 1 0-- 0 0 

I 0 ~j 1- - 0 () 

I I ....... I I J ....... 
nj "" I I I I ........ I , 

0 0 0--- Aj 1 
(19) 

0 0- - - 0 Aj_ !-

nj x n. 
J 

" 
t 



P.M. DAIlIIDI AND A.S.S.R. REDDY 

The system (17) can be divided into m ~ubsystcms. For the system (17) 
to be controllable, these m subsystems ·!th tneir corresponding blocks 
in the B matrix must each be separately controllable. 

B. Application of the Controllability Theorems 

Th~ theorems briefly outlined l,~re will now be appl~ed to several 
cases of interest for different combinations of numbers and locations 
of the actuators along the beam. 

Case 1: One actuator at oue end of the beam with pitch and nYo generic 
modes contained in the mathematical model. 

The actuator is assumed to be located at the left end (Fig. 1) ~ -
-1/2. The first and second modal shape functions for a free-free beam 
can be evaluated at that point to yield8 

~l (-1/2) _ ¢2 (-1/2) = 2 
z z 
5 

and Ml - M2• 
The state equation for this system can be expaLded in the form of Eq. 
(17) with the result that 

f3 0 

:J B - r : 1 A - 10 c 

0 0 

- .. 
where 1/2Ju..2 

b .. 2/H Zw2 a .. 
c 1 c 

2 2 c .. (wl/wc ) d = (w2/wc) 

The controllability matrix based on the reduced system matrices, A 
and B, becones 

[: 
3a 

9. ] 
C [B AB A2B] bc bC~ 

bd bd L 

For controllability the matrix, C, must have a rank of ?, or 

det C = - ab 2 (c-d) (c-3) (d-3) f O. 

~~e necessary and suffic~e~t conditions for controllability becooe 

The last two of these conditions will, in practicp, place a lower bounds 
on the stiffness and/or an upper bounds on the length of such a long flex
ible structure in orbit. 
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Case 2: Three actuators two of which are .:lssllmed tn be placed at 

with 

the ends and one at ::he mid point of t;lle be3l:l. with the 
mathematical model contain1ng only the first :wo generic modes. 

For this case. 

A. [~ : J B • [: -: -: ] 

a - 2/MIlw~ b - I:2/Mllw~ with Ml - M2 

and c.d defined as in Case 1. 
The controllability matrix may be calculated as 

L
a a -b: ac ac -bC.J 

C - I 
a -a 0 I ad -ad 0 

It can be seen that since the B matrix itself has rank 2. then C 
will automatically have rank 2 and the system concrollability is inde
pendent of the nature of the matrix A. 

Case 3: Two actuators one each at the ends with pitch plus the fiLqt 
gen~ric mode in the system model. 

For this system the A and B matrices In Eq. (17) become 

A • r ~ : 1 B lOr r a _aj
1 

Lb b 
with 

a - b .. 

The resulting controllability matrix 

c • [ : 
-a 3a -3'] 

b bc bc 
I 

has rdnk 2 ~ince the B matrix has rank 4. Thus. the system controllabi-
lity is 

Case 4: 

For 

ensured. 

Three actuators two of which are assumed to be located at 
the ends and the remaining one at the mid point of the beam; 
the model contains pitch plus the first two generic modes. 

this case 

r3 0 
I 

A = 10 c 

10 0 
~ 1 B" [: -: -~ J 
d b -b 0 
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P.H. BAINUM ~{D A.S.S.R. REDDY 

with c,d as defIned in Case I 

and a - 1/2Jw~ b - 2/Hllw~ 
and HI - H2• 
The controllability matrix, 

C - [: 

-a 0 I 3a -33 o I 9a -9a 

-c:J b -e bc bc -ce I bc2 b:.2 , 
bd2 -bd2 -b 0 bd -bd o I 

must have rank 3 to ensure the system is controll~ble, which means that 
from the "ine columns it must be shown that at lenst one 3x3 llon-zero 
determinant exists. 

If we arbitrarily select the f~rst, third, and fourth columns, 

then -eab (d-3) ~ 0 
which is guaranteed if w2 ~ I:3wc • Although this is a sufficient con
dition for controllability at this point we don't know whether it is 
also a necessary condition. 

As an alternate, let ~s select the first, third, and sixth columns 
of Cj then 

ab2 (d-c) (c-3) (d-3) ~ 0 
which will be ensured if the following sufficiency 
conditions are satisfied: 

w2 ~ wI' wI ~ I:3wc ' and w2 ~ I:3wc 

In order to establish necessary conditions, we ~Till now assume that 
any two of the frequencies are the 3ame and then apply the theorem for 
the case of repeated eigenvalues. 

(a) Firs~ if it is assumed that c = d (WI ~ w2), the correspondIng 
subsystem matrices are 

(b) 

A - [~~ B - [~ -~ -~J 
Since the B matrix has rank 2, the 
necessary for controllability. 

If it is assumed c = 3, (WI = I:3wc) 
system matrices are 

A a [~ ~J B .. 

condition: c ~ d, is not 

the corresponding sub-

Since B has rank 2, the system is controllable for th~s case. 
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CONTROLLABILITY OF A LONG FLEXI3LE BEAM IN ORBIT 

(c) We now consider the case when d .. 3(w
2 

a I:3w ) where the 
subsystem matrices are c 

[~ ~J [: 
-a 

~J A - B .. 
-b 

and 

[ : ~J -a 0 3a -3a 
C • 

-b 0 3b -3b 

The controllability matrix has o~ly onp independent column and 
can not have rank 3 when w2 .. I:3wc • 

(d) Finally we consider the case where 3 = c 
(admittedly, of only academic interest) 

=d or "-'pitch .. wI .. (1)2 

Then 

U 
0 

~] [: -~ ] -a 

A" 3 B = b 

0 -b 

and 

f: 
0 3a -3a 0 9a -9a o 1 -a 

C .. b -e 3b 3b -3e 9b 9b -:eJ 
-b 0 3b -3b 0 9b ·-9b 

It can be observed that the C matrix can not have rank 3. 

In conclusion, we can say that only one of the three necessa~y 
conditions is also a suffic~ent condition for controllability, i.e. 

w2 ;. iiwc 
In actual practice the repeated frequencies ass0ciated with the modes 
included in the model will be known so that it is possible to verify 
in advance of the selection of the control law whether the particular 
choice ~f number and location of actuators will result in a con
trollable system. 

4. Numerical Example 

A numerical example of Case 1 is considered where it is assu~ed 
that the control force generated by the single actuator depends on 
only rate feed-back accord~ng to 

f = 
1 

where the Xi are the pitch, and non-dimens~onalizeJ f~rst, and second 
modal amplitude der~vatives, respect~vely. w~th respect to the orb~tal 
time, ,. 
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P.M. BAINUM AND A.S.S.R. REDDY 

It is assu~ed that the fundamental natural frequency Ot the freefree beam is 1/100 cps and that the c.m. moves in a 250 n. mile altitude circular orbit. For this case 
(w1/w )2 a 3200 and (w

2
Iw)2 ~ 28,800. 

As an example~ a 100m. long slender 60110~T tubular beam madE' of wroughc aluminu::a (20l4T6) and with 3n outside diamet:;!r of 10. 79cm,and thickness of 1.06cm, would exhibit these f~equencies 

The completely nontrivial part of Eqs. (16) or (17) may be ex-panc!ed to yield 

Xl + 3XI-59.52KIXl-59.52K2X2 -59.52K3X3 = 0 

X2 + 32DOX2 -20.0K2X2 -20.0KIXI -20.0K3X3 a a 
X3 +28,800X3-20.0K3X3 -20. 0K2Xl -20. 0K2X2 ~ 0 

If we arbitrarily select Kl = -0.00577, ~2 = -0.05656, and K3 a -0.01695 (note these gains would correspond to much less than critical damping if the other coupling terms in rates did not appear) and assume that the ini~ial conditions are Xl(O) = X2(O) = X3(0) = 0.01 and all initial Xi (0) a 0, the controlled response is illustrated in Fig. 2. The relat~veJv '~ng response time with the relatively low level of peak thrust ,'Iv l'.d be noted. 

0.02 (, 

-0.02 

11 

t AIJA" _ 'e: VVVV time. t (seconds) 

0000.0 

- -

Fig. 2A 

Figure 2: Case 1 - Controlled Response, Pitch + Two Hodes 
with One Actuator at Left End. 
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CONTROLLABILITY OF A L01~G FLEXIBLE BEAl'1 I!-l ORBIT 

envelope 

r--~>----------------...J50000.0 
Time t (seconds) 

-O.O,~--... ______ --... ____________________ __ 

N 
< 

Fig. 2B 

t-------=:::::=~~=-----(--------I50000. c Time t seconds) 

Fig. 2C 

Figure 2: Case 1 - Controlled Response, Pitch + Two Modes ~ith 
One Actuator at Left End. 
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3.9~~~-----------------------------------' 

I--________ -===:===:::=::~--_tsoooo.o 

-3.9L-~~ ________________________________ ~ 
Fig. 2D 

Figure 2: Case 1 - Controlled Response, Pitch + Two Modes 
with One Actuator at Left End. 

This example is presented as a verification lhat the system in 
Case 1 with ~he number of actuators less than the number of mode~ is 
co~crollable. In a related paper methods of selecting control law gains 
bas~d on decoupling considerat10ns is discussed. 9 Control gains are 
selected based on the follow1ng two criter1a: (i) decoupling of the 
linearized systen equations with appropriate stat~ variable feedback; 
and (ii) applying the linear regulator problem to the n modal coordi
nates separately and thus selecting the ga1ns by solving groups of n 
two dimensional matrix Riccati equations. 9 

5. Con~luding Remarks 

In the present paper a model is developed for predict1ng the dyna
mics of a lo~g, flexible free-free beam in orbit under the influence of 
control r~v1ces which are considered to act at specific points along the 
beam. Application of two classes of theorems establ1shes ~he necessary 
and sufficient conditions for controllability and clearly demonstrates 
that the number of actuators, if properly located, can be less than the 
number of modes in the system Dodel. 

The insight gained by this preliminary study w1ll be useful in 
analy?ing the dynam1cs and control of more compiicated structures such 
as of a large fla~ible plate in orbit, which more adequately represents 
a large flexible orbiting platforo. Another possible extension to the 
current work would be a study of the effect of UQ1ng control devices 
which are distributed along the bea~ instead of be~ng treated as P010t 
actuators. 
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III. Decoup1ing Control ot a Long Flexible Beam in Orbit 

Control of large flexible systems using state 
variable feedback is presented with a long flexible 
beam in orbit as an example. Once the controllabil
ity of the system is establi3hed, the feedback gains 
are se1ect~d: (i) based on the decoupling of the 
original coordinates and to obtain prcper ~~~ping 
Gnd (ii) by applying the linear regulator problem to 
the individual reodal coordinates separately. The 
linear control laws obtained using both techniques 
are then evaluated by numerical integration of the 
non-linear system equati0ns. The response of the 
state together with resulting beam deflection and 
actuator force (s) required eire obtained as functions 
of time for different combinations of the number/lo
cation of actuators and the number of modas In the 
system model. Also included are results showing the 
effects (control spillover) on the uncon~rolledmodes 
~hen the number of controllers is less than the num
ber of modes, and the effects of inaccurate knowlege 
of the control influence coefficients which lead to 
errors in the calculated feedback gains. 

1. Introduction 

Future proposed space missions would involve large, inherently 
flexible systems for use in communications, as collect0rs of solar 
energy, and in electronic, orbital-based mailsystems.l ,2 For the 
first time the flexible parts, and in some cases the entire system, 
due to its size, must be modelled as being completely flexible. In 
order to satisfy the requirel l1l!nts of such missions, it will be necessary 
to control not only the orientation of the system but also the geo
metrical sha?e of the configuratlo~. 

As a specific exa;:Iple of the general formulation of, t .e dynamics of 
an arbitrary flexible body in orbit developed by Santini-, the uncon
trolled motion of a long, flexible beam was investigated. 4 The motion 
of a generic point it! the body was described as the sljperposition of 
rigid body motion plus a combination of the elastic modes. 
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Further it was assumed that the systeu center of mass followed a cj~
cular orbit ~nd that the pitch {rotation) anc fl~xural deformatj~ns 
occured Yith~n the orbital plane. For this planar motion, it was seen 
that the pitch motion was not influenced by the beam's elastic motion. 
The decoupling of pitch and the elastic modes was observed for large 
values of the ratio of the structural modal frequency to the orbital 
angular rate. When the values of this ratio are small the elastic mo
tion is governed by a Hill's three-t~rm equation which could be approxi
mated by a Mathieu equation, and the resulting stability ~as considered 
by means of a Mathieu stability chart. Numerical simulations verified 
the possibility of vibrational instacility for a very long uncontrolled 
flexible beam in n~ar-earth orbits. 4 

The controllability of a long flexible beam with point actuators 
located along the be~ is considered in Ref. 5 for the case of small 
amplitude flexural deformations (Fig. 1). Necessary and sufficient 
conditions for controllability with preselected locatio~s of actuators 
are derived using theorems develoFed in Ref. 6. Once controllability 
is assured, values for the gains in the control laws are selected on an 
arbitrary basis, and only tor one combination of actuator location and 
number of flexural modes. 5 

"Z, Z; 

. outward local vertical 

O(x,t) = r A (t) On(x) 
n n 

Fig. 1. Beam Configur~~~on with First Mode Deflection and 
p ActltC!tors. 
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In the present paper selection of coptrol gains for any larg~ 
flexible system using the following two criteria is discunsed: (i) 
decoupling of the linearized system equations with app~opri?te state 
variable feedbac1c 7; and (11) applying the Hnear regulator proble~ to 
the modal coordinates (n) separately and, thus, ~e1ecting ~ains by 
solving groups of "n" two by two matrix ~iccati equations. ,9,10,11 

A long f1.exib1e beam in orbit is taken as an eXaII':?le with the 
model developed in Refs. 4 and 5. Gai.ns are seJ.ected using the tl'O 
techniques and numerica! simulation of the non linear eq~ations is 
employed to predict the responses for sample cases. The deflection 
of the controlled beam at various inst~nts of time in also illustrated. 

2. Decoupling bv State Variable Feed~ack 

After appropriate l1nearization the dynaQic model for any flexible 
system can be represented by 

where 

AX. :. BX + ex = DU 

A is an nxn non singular ~atrix 
B,e are nxn matrices 
D is an llXm'IDatrix 
X is an nxl stc.te vector repre~ont:"lg deflectioIlS 

in addition to tpe rigid body rotations. 
U is an ~~l ~ontro1 v~ctor 

(1) 

-- - ~ , 

Equation (1) can be written in more standard state space form oy def1n~n~ 
. 

X = Xl' X = X2 = Xl as 

l:J [_A:1C -A:1J [j + C-:J (2) 
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Equation (1) takes 
itlherentl v present 
sen ted by Equation 
Ref. 6, unless B 1 

i~to account ~he modelling of any struct~ra1 da~ping 
in I~e system. Controllability of the systems repre
(2) can no~ be obtained us~ng th~orems developed in 
O. In eSSe; .. h<!re B i~ 0, the controllability matrix 

of the pair 

r-A~lc -A~lBl [ 
01 

A-~J 
must have rank 2n. 

I. -After enoosing a state variable feedba~k control law of the ~orm . 
U-KX+LX 

where 

K a mxn rate teedback gain ma~rix 
L a wxn position feedback gain natrix 

Equat':,)t, (1) can be re~'ritten 3S: 

i + (A-IB-A-~K)X + (A-1C-A-1nL)X .. 0 

T 
For decouplir,g of the states X" (Xl' X2, ... , Xn) 
the ~atrices (A-1B-A-l nK) and (A-IC-A-InL) must be diagonal. 

i.e. -1 -~ A B-A K" l; 

-1 -1 
A e-A nL'" til 

where 
l;1l 0 0 til 11 0 

l; :I 0 l;22 0 and til ~ 0 "'22 
I I 

I 
I , 

0 0 .. 0 0 
nn 

Redef ... ning 
A-lB = E , A-Ie = F 

A-In = G 

we have 
E K= r .. 
F - GL .. (II 

K = .th column of tl.e K matrix 
1 

~ 

with 

L = i 
ith ('olumn of the L matrb:: 

rrT-4 

0 

0 
I 

I , 
til nn 

(3) 

(4) 

(5) 

(6) 

(7} 

(8) 

(9) 

(10) 

(11) 

" . 

f 
I 
I 
t, 
[. 

I 
I 
t 
I 
I 

r , 

I 
f 

f 



Equations 
equations 

E ' ... 
i 

F ' a 
i 

ith column of (E-~) matrix 

ith column of (F-w) matr~x 
(10) and (11) 
of the fOI.":!: 

can be uritccn as 2n sets of algeoraic 

i .. 1,2, •• n (12) 

Consider onp. of the above 3ets of linear dlgebra~~ equations for the 
case whe:e i .. I, 

GK nE' 
1 1 

(13) 

There are n equations a~d m unknowns (the e~ements in the first column 
of the Kmatrix). The fundamental theorem for a Si'!t of n linear equations 
with m unknowrs is now applied12 ,13: 

For a unique solution: 

Case!: If n > m (more equations and less unknowns) the rank of G 
and the augumented matrix [G; El'] must be n. 

Case 2: If n .. m (number of equations = number of unknowuR) the 
rank of G and the augumented matrix [G ; Ell must. be m 
(or n) - i.e. G must be non-singular. 

Case 3: If n < m (less eq~~ticns, more unknowns) 
exists. 

Fo~ non-trivial solution: 

no unique solution 

~ase J.: If n > m (more equations and le~s unknowns), the rank Qf G 
and the augumented matrix [G: Ei) ~ m. 

CaH. 2: If n = m (nULlber of equations = number of unknowns), the 
rank of G and the augumented I'latrix [G : E1 '] ~ m. If the 
rank = m = n, a unique solution exists. 

Case 3: !f n < m (!ess equations and more unknowns) the r'lnk of G and 
the agumented matrix [G: E1'] ~ n. 

These conditions m~st be satisfied by the 2n subsystems given by 
(12) for decoupling to be implemented and, thus, dictale the choice 
of the ~ctuators. 

~or casp.s where d'e 1lumber of actuatcrs are more or less tilan the 
number of original coorainates in the zyc~em, the controllabil~ty con
~itions and the conditicns to be satisf~~d for decoupling may pose 
numer~cal (computat~onal) problems, especially when the order of the 
systerl i~ large. 
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When the number of actuators equals the number of original coordinates 
all controllability and decoupl~ng conditions depend on the non 
singularity of matrix, G. 1b; S In<:ltti): :.~ ,m r'w'\n matrix and can be 
made nO::l-singular by properly selecting the location of the actuators. 

If there are 6 original coordinates and 3 actuators, then the con
trcl1ability matrix has 36 columns out of which 12 columns must be 
independent to have rank 12. The maximum nlmber of determinants to be 
eval .... ated are 

36! 
12124! 

- 9 - 1.25l6775xlO determinants. 

Aus~~ng a L 3ec. computational time required for the evaluation of 
each twelth order determinant, the examination of all possibl~ com
binations "ould involve 347,688 hrs. or computer time. 

Specific cases, where controllability of this system is examined 
when the number of actuators differs from the number of modes in the 
system mod~l are presented in Ref. 5, but only for a low order system 
(n .. 3). 

max 

3. Linear Regulator Problem 

Using modal analysis8 ,9,lO,ll dynamical systems represented by 
(a) : 

where 
q = n dimensional vector describing angular and elastic 

disp1acI:lents 
M,K = positive definite mass and stiffness matrice 

G = gyroscopic antisycmetric matrL~ 
C = pervas~ve damping, either positive definite or 

semidefinite matrix 
u(t)= control vector 

or by (b): 
l~ + cq + Kq = u(t) 

with 

can be transformed to 
.. . 

(a) X + DX + B: = Eu = u' 

or . 
(b) X + FX = Eu = u' 

with D and F representing the diagonal transforMed ~atrices. 
The left hand s~des of Eqs. (14) and (15) represent pither 

(14) 

(15) 

(16) 

(17) 

damped or undamped harmonic oscillator These oscillators can be con
trolled optimally and ~ndependent1y w~th one control force for every 
independent modal coordinate. 
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The actual control, u(t), in the orieinal coordinates, qi' can be 
calculated from the control, u'(t), in the decoupled (modal) coordinates, 
Xi' by 

-1 
u • E u' 

th The i component of the control vector, u', can be calculated as 
follows: 

th '£he i independent modal coordinzte is governed by 

Xi + DiXi + FiXi ~ uti 

where 
D • 

th clement of the D matrix 
i 

i diagonal 

F a 
th element of the F matrix 

i i tliagonal 

Equation (19) can be written in state space form by defining 

X .. Xi ,x .. X .. X1 1 1 i 12 1 

Xi 
1 0 1 Xi 

1 
0 

.. + u ' 
-F -D 1 

i 
Xi i i Xi 

2 2 

similar to the standard form 
. 
X ... AX + Bu 

(18) 

(19) 

(20) 

(21) 

A performance index f~r the ith modal coordinate is defined as 

(22) 

where 

and Ri is a scalar. 

The control vector is given by 

, -1 T . 
u i = -R. BiS.X, 1. 1.. 

where (23) 

Wher£ S is the symmetric matrix solution of the two dimensional 
R• .1. . l.cr.atl. equat1.on: 

(24) 
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with 

A .. 
1 

T Bi :: [0. 1] 

R • R1 and Q a Qi 

For the second order system represented by Eq. (24). the elements of Si may be solved in closed form with the results 

S 
Ri [-Fi ± { Ff + Qi/Ri ] (25) 112 D 

1 

S - R
j [-D1 ± { Dt + 1- (Q1 + 2Si ) (26) 122 Ri 2 12 

S .. Fi Si + Di S1 + 1- Si S1 (27) 111 22 12 Ri 12 22 
where the signs of the radicals are selected such that Si is a positivp. definite matrix. 

Then 

[::~ 
u ' g - [S • S ] 1 112 i22 

(28) 

4. Numerical Example 

A long flexible free-free beam in orbit is considered to demonstrate the two gain selection ~echniques described earlier. The model (Fig. 1) including point actuators is taken from Refs. 4 and 5 and is based on the assumption that all rotations and deformations occur nnly within the orbital plane. The eq~ations of motion are given by 4.5 

where 

n = 1,2. 

e ~ pitch angle relative to local vertical 
T = w t, normalized t2me c z = A I~. non-dimensiondl modal amplitudes n n 
£ ~ length of the beam 

w = orbital angular rate c 
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After defining 
o .. X 

1 
dO/dt :: X = '{ 

1 n+1 

dzl/dt = X2 c Xn+2 

zn_l - Xn dz /dt. X .. X n-l n 2n 
Equations (29) and (30) can be written as 

where 

. 
x- [~ I] X + B u o c c 

(31) 

T 
X .. [Xl' X2, ••• , Xn' Xn+l , ••• , X2n] state vector 

A .. 

B = c 

u .. 
c 

with (Ref 5) 

Then 

u = 
c 

o • nxn null matrix 

I .. nxn identity matrix 

-3.0 o 

o 

[ Q ] 
I 

[~ . E1 , • ••• En_1 J 
l1.iw~ Ii iwz 

n-1 c 
p 

-

actuators located at (f;1' f;2' ... , ~ ) 

';1 - ';2 
Jw2 J7 c c 

1 
<P z (f;l) 

1 
<P z (f;2) 

M1iw~ ~iw2 
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Case 1: pitch + 2 modes are cons~deted in the model Yith actuators 
located at (-1/ 2_ t/2 , t/4) 

-3.0 59.52 -59.52 29.76 fl 

A- -320:).0 Bu ::r 20.0 20.0 - 2.0 £2 c c 

-28800.0 20.0 -20.0 9.3 1:3 

The gains are selected for cecoupling anu critical damping in the 
decoupled mood es (only rat2 feedbac:.~is consl.ciered here since the 
uncontrolled system is alreacy dacouplad). The required control 
forces are given by: 

:~ · I:::: -2.835 -5.2757 

-2.835 :3 jl71 

f3 L 0.0602 0.0 -17.5855 

The time response of piech, nondimensionalized ~odal amplitudes, 
and forces required are plotted in tbe following figures, ~ig. 2). 
As the mode number (and frequency) increase the decay t~e decreeses. 
The pitch takes a relatively long ti=~ to decay since its natural 
frequency is very low and only rate feedback is considered here. The 
maximum amplitude of the forces are of the order of newtons for this 
application. 

0.01~ ________________________________________ -, 

-O'l 
c 

~I_------------------------~::::==~==========--~ ... t- ~OOO.O 
c:l ,.. -

-(J.01 

Fig. 2. 

tiI:le t. (s ~conds) 

Fig. - 2.;. 
Decoupled Controlled Res»onse - Pitch + T',;o Hodes 
with Three Act~ators (-li 2• 1/2, l/~). 
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Fig. 2B 

)6.3 1~8~ ____ --.. ________________________ ~ 

140.0 

time t (seconds) 

M 
11-4 

. 
i 140.0 : 

t:il::e t (seconds) 

:...-.-__________ --11,-10.8 L..-___________ -!. 

Fig. 2C 

Fig. 2. 

Fig. :D 

Decoupled Controlled Response - Pitch':' T-IO :lodes 
with Three Actuators (_1./ 2 • l/2, '1.14). 
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1.8~------------------------------------------~ 

-G2 
c:: 
o 
~ 

! f------

j I 
-N\! 

250.0 
time t (secon,s) 

-l:~~~ _________________________________________ ~ 
'Fig. 2E 

'Fig. 2. Decoupled Controlled Respc:1se - Pitch + T';;o !fodes 
with Three Actuators (-lIz, 1/2, t/4). 

Case 2: pitch + 4 modes considered ~~~h actuators located at 
(-1/2,-9./4, 0, '1./4, 'L/2) 

-3.0 0 0 0 0 

A::z 0 -3200.0 0 0 0 

0 0 -28800.0 0 O· 

0 0 0 -93079.50 0 

0 0 0 0 -255331.l.0 

, .... , .. 
, .. 

I 

... 



For case 2, the g~ins are selected usin? ~oth decoupling and an 
application of ~le linear regulator pro~l~ to the independent modal 
coordinates. 

using decoupliog (pitch an~ the tirst four modes are critically 
damped) , the control forces ar~ given by 

fl -1.199 -1.423 -789.03 -7.578 3365.27 r ~l 
f2 -3.329 0.0 -2183.39 0.0 9392.17 X2 

1:3 -- -2.443 4.015 -1620.70 -21.649 6946.89 X3 

f4 -3.278 0.0 -2200.36 0.0 9397.81 X4 

f5 -1.669 -1.423 -780.,55 -7.578 3362.45 X5 

The response to an assumed perturbation of 0.01 in all tne posi
tion coordinates, including pitch, is shown in Fig. 3. rne maximum 
amplitudes of forces are of the ~rder of hund=eds of newtons. Fig. 3, 
also illustrates how the initially defo~ed beac is straightened out 
under the influence of the controllers. It is seen that after 36 sees 
the beam is essentially straight, but continues to exhibit a pitch 
displacement until about 4000 sees. 

Fig. 3. 

0.01 

<:) 

time t (seconds) 5380 

l_~ 
-0.01 

'Fig. 3A 
Decoupled Controlled :\esponse - ?:.t~h + Four !-~odes 
with Five Actuators (-l/2, -214' 0, i/~, liz). 
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180.C 
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-0.01 

M 
-< 

-0.01 

Fig. 313 

time t ( d ) 36.0 
secon s . 

Fig. 3D 

N 
< 

~4.0 
time t (second.~) 

-0.01L-_____ -=~~~~---~ 
Fig. 3'~ 

18.0 

time (seconds) 

-0.01 L--_________ -.l 

Eg. 3£ 

Fig. 3. D<!cQupled Co::.trolled Res:;:mse - Pitch.!. four Uo':es 

with Five Actuators (-z/2. -7./4 • 0. 7./ L• 7./ 2) 
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(newton;)I~S-:::.L/ ________________ ---l1 
582.0~------------------------------------~ 

(ne~o::)kJl-~_~ ______________ J 
42;_0

1 
"- I 

(newton~)~ I 

58:.0L~ ~ 
(ne~On;)~L~~ ________________________________________ ~_~ 

204.0, I 
-f: ~ t:o 135.0 

1 ~ / I seconds (newtons) '-"'~:-" ____________________ --J. 

Fig. 3F. Time History of Required Actuator Forces. 

I 0.08 
t a 36.0 >L ________ -==-==_---------; 
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'------------------------------------------~ 
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] 
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0.08 
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--------::::::::=== 1-0.08 
x :: 0 
(Left End) 

Fig. 3G. 

Posit1~~ along the ~ea~ 

Bea~ Deflection wkth Ti~e. 

X = L 
(Right End) 

Fig. 3. Decoupled Control.L~d Respo:lse - PHcn + Four !-!odes 
Yith Five Actuato~s (-1/2, _i/~, 0, 2/4, 1/2) 
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rne l{~ear regulator probl~: ~s applied ~c the systea in the decoupled 
(modal) coordinates, where the non-d~ensionalized rates are penalized 
by a factor of frequency squared as compared ,.nth the non-dicen
sionalized position coordinates. After solution of the five ~w~ 
~imensional mAtrL~ Riccati equations, the actual control. forces are 
given in terms of the following gain matru. 

-0.056 1 • .zs3uO-6 0.0 0.0 0.0 -0.6312 -0.71.2 -334 • .52 -4.3!.3 !S3Z.O 

-o.U59-- 0.0 0.0 0.0 0.0 -1.7527 0.0 -109.11 0.0 4696.0 

-o.ll44- 3 • .54SnO-6 0.0 0.0 0.0 -1.2359 ~.OO7 -alO.3S -S.02!. 3473.~ 

-0.1535 0.0 0.0 0.0 0.0 -1.7255 0.0 -U.CO.18 0.0 4.S98.9 

-0.0545 0.0 O.a 0.0 0.0 -0.6142 -0.71.2 390.21 -4.343 1631.2 

0.01 

(seconds) 

5380.0 

-0.01 Fig. t;A 

Fig. 4. Linear Regulator Apolication Con~rol!ed Res~onse -
Pitch + Four }Iodes '.nth Five Ac::uators (_l/2, -2.4, 
0, '1./ 4 , 1/2), 
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c 90.0 
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-0 
I c: 
o 
Z -N 
<: 

FJ.g. 4C 

o .01 r..-----------~ 

27".0 
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Fig. L.D 

L~near ~egulator A?pl~ca~ion Cont=olled Resoonse
PJ.':ch + Four ~!odes ~::.th 'F"ive Actuators (_l/ Z• -1;4. 
0, 1./4, '1.12) 
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Fig. 4F. Time Rist~ry of Required Actuator forces 
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The response to an assumed initial parturbation of 0.01 in nIl the 
position coordinates is shown in Fig. 4. As the ~ates are penalized 
heavily when compared to the positions, the controlled syst~n fre· 
quencies are not changed appreciably and the demping obtained in the 
individual modes i~ less than critical. The very small nUlllbers anci 
zeros (which are in reality < 10-7in the second to fifth columns of 
the position feedback portion of the gain matrUOnre due to unit 
~eighting of the positions in the Qi matrix. It can be sho'~ th~t 
the forces required have a maximum amplitude of the order of thousands 
of newto.1S. When compared 'dth Fig. 3, the maximum amplitude of the 
fc~ces reouired here are approximately two orders of magnitude larger. 
This can be explained by the fact that the model used here 1ncludes the 
third and fourth higher frequency modes, and it h~s been assumed that 
all fou~ modes and pitch were initially excited equally. 

5. Conclusion 

A technique for selecting control system gains based on th~ de
coupling of the original linear system equations of motion is pre
sented. This avoids use of modal analysis and does not r~quire sys
tem matrices to !>e symmetric 01.' skew symmetric. When the .lumber of 
actuators is equal to the number of modes, a unique solution for the 
control gains depends on the non-singularity of a matrix baced on 
(modal shape functions evaluated at) actuator locations. w'hell the 
nl~ber of actuators is :ess than the number of modes and the order of 
the system is high, implementation of decoup1ing control m~y be limited 
by the computational capacity. 

The linear regulator probl~~ can be applied to the decoupled modal 
coordinates only when the number of actuators is eq'Jal to the number 
of modes. Otherwise insteJd of solving n second order matrix Riccati 
equations, a 2~~2n matrix Riccati equation has to be solved. 
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IV. Comparison with Results Based on Independco'_ Modal Control 

In Refs. 1 and 2 the control of the planar motion of a long fl2X
ble beam in orbit was studied based on tI,e concept of distributed m"dal 
control. TIle control forces genera red bdsed on this con~ept pr~vide a 
means of controlling each system mode independently of all other modes 
as long as the number of mod~s in the system mathematical model is the 
same as the number of actuators. For the case where the number of modes 
(N) is greater than the nu~~er of ~ctuators (P) independent control of 
P modes is possible, and the response of the remaining (N-P) modes 
depends on the residual coupling due to the P actuators. 

The mathematical model used in Refs.l and 2 is based on a three-mass 
discretization of the ~ree-free beam, with two of the masses aS5umed 
to be at the ends of the beam and the third mass at an interior point 
which later was selected ~t the center of the undeformed beam. :he 
beam was represented by two hinged cantilever-type members consisting 
of the end mass connected by (assumed) massless springs which were 
responsible for the structural restoring forces (Fig. 1). One of 
the re3ults from Refs. 1 and 2 indicates that the beam, represented by 
two degrees of freedom, ~nd cont~ining a single actuator at one end, 
when given an initial perturbation, will not return to the equilibrium 
position when the control is based on the concept of independent modal 
control. In the present study (Chapter II), it is clearly shown that 
a beam with a single actuator at one end and with pitch and two generic 
modes in the model can be controlled and will return t~ ~ desired unde
formed alignment with the local vertical. 

In an effort to resolve this apparent ambiguity, we will return to 
the previously developed discretized model and exarn~ne both the con
trollabil~ty and stability of the system when F = 1 < N = 2. 

The linearized Lquations of motion are [Eq. (3.18) of Re:f. 1 or 
Eq. (38) of Ref. 2] 

where 

and 

M*; c = 3w~ M* (2 + ;0) + k 

M* = ul- 1M 

m = mass of each end mass 

mo = mass of ~nterior mass 

k = elastic restoring constant (=3EI/t 3 f~r assumed 
cantilever members) 
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Fig. 1. 'n1ree-~!ass syste."1 configura.tion 
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l = length of each member (one-half the undeforccd Deam 
length) 

Wo a orbital angular velocity 

vl ,2 = linear deflection of each end mass 

F .. control forces due to actuators 
v l ,2 

Eq. (2) can be rewritten as 

If 

then Eq. (2) 

~l .. X3 = ~l 
v 2 .. X4 '" X2 

can be written in standard 

+ 1 

state space form as: 

(2) 

~ll 0 0 1 0 Xl 0 0 

[::: ] (3) 
0 0 0 1 

X2 Xz 1 0 0 
-ac bc 

0 0 + a2-b2 
X3 I 7=bT az:bT X3 a -b 

, 
i,c 

X4 J -ac 
0 0 -b az::bT ~ X4 a 

Eq. (3) is nou wrl.tten in the fOr::!: 

X = C~ ~ J X + [ ~ J f 

so that according to the controllability theorem, the system represented 
by Eq. (4) is controllable if and only if the controllability matrix, C, 
associa~rd with the pair of reduced state and contru1 matrices, [A,B], 
is controllable. In this case 

-c(a2+b2 ) 
2abe ] 

1 
a -b aZ-bZ i!+b2 

C = ~ -b 2bc -c(a2+b2 ) a 
a2-b2 -a':-b2 
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r a -bJ Since Jet _-b a ~ 0, in general, 

C has rank 2 and the syqtem (2) is controllable. 

If only one actuator is assumed to be present (i.e. FV2 - 0), then 
Eq. (3) ca~ be written 

o o 1 0 

o o o 1 

o -ac bc 
T-if az:bZ" 

IS o 

bc -ac 
aq;:z- T-i7 o o 

The reduced order controllability matrix is: 

C .. r al (;l- _b2 ) 

~bl (;l- _02 ) 

and its determinant, 

-c(;l-+b2 ) I (;l- _b2 )2J 

2abcl (a2 _b2)2 

+ 1 
;T-bT 

det C .. bc/(;l-~2)2 I 0, since in general, a f. b. 

o 

o 

a 

-b 

Thus, the system is controllable with a single actuator present. 

(6) 

The stability of system (6) will now be examined using the parti
cular control law used in Refs. land 2. The linear equat~ons of motion 
(1) or (2) can be transformed into the modal coordinates, ql a.d q2' 
and for the case where only one actuator is present have the form: 

.. 
q2 + A2

q2 .. [(a+b) I (a-b)]U
1 

= g ul 

where 

Al c/(a+b) A2 = c/(a-b) 

Following Refs. land 2, in accordan~e w~th the concept of inde
pendent modal control. the control in the modal coord~nates was 
selected as 
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lben Eqs. (7) and (8) can be written as: 

ql + f 2
ql + (f1+Al ) ql a 0 

g(f2
ql+fl

ql) + ~2 + A1q2 a 0 

(10) 

(11) 

The characteristic equation for the system described by Eqs. (10) and (11) can be developed with the result: 

(12) 

An undamped mode remains at frequency ~ and is not affected by the feedback gains, fl and f 2 • After the control removes the init~al perturbation in ql' in general, the system will continue to oscillate at the second (uncontrolled) modal frequency. The system is unstable about ql • q2 a 0 in the (strong) sense of Routh-Hun.itz where the control iaw for the single actuator has the form of Eq. (9). An exa~ple is illustrated by Fig. 9 of Ref. 2 for this case whe=e fl ~ f2 = 1.0, and demonstrates the basic phenomenon of control spillover. 

Instead of selecting the control ldw based on the independent al control concept, suppose that a coupled rate feedback control law i~ employed having the form: 

Ul =-Klql - K2
q2 

Eqs. (7) and (8) can then be expressed as: 

ql + Klql + Alql + K2
q2 = 0 

(13) 

(14) 

g Klql + q2 + gK2
q2 + A2q2 = 0 (15) 

with the associated characteristic equation 

If the rate feedback gains, KI and K~ are selected to be positive, the system will be stable about ql = q2 = 0 according to the Routh -Hurwitz criteria, noting that g = (a+bJf(a-b) > U. 

Numerical Example 

Following Refs. 1 and 2, the total mass is selected to be 1000 kg, equally divided between the two end masses and central mass, mO. Thus, 
M = 1000 kg 

m }if3 ~ m o 
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K* a m2 /M = 111.11 ~3 

a • M*{l~;O) = 222.22 kg 

b • M* - 111.11 kg 

k = 3EI/!3 = 0.18497 N/m for a cylindrical 
wrought aluminum tubular beam, 100m. 
long (L ::z 2!) 

Wo - 1.115 x 10-3 rad/sec 

c = 0.1862522 

-4 
Al I: 5.5876x10 

A2 a 1.67627x10-3 

g a 3 

If the feedback rate gains are selected as 

Kl = 0.4728 

K2 = 0.4000 

(such as to produce less than critical damping in each of the two normal 
~odes) then the roots of the characteristic equation (16) as selved by 
a computerized polynomial root - finding routine are: 

-6.40l9xlO -4 

-~ 2 -8. 58l39xlO ± j 2.952816xlO-

-1.670404 

verifying the stabili~1 of the system. 
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v. General Conclusions and Recommendations 

A model is developed for predicting the dynamics of a long, flex
ible free-free beam in orbit under the influence of control devices 
which are considered to act at specific points along the beam. Two 
classes of theorems are applied to the system model to establish neces
sary and sufficient conditions for controllability depending on whether 
the system possesses non-repeated or repeated eigenvalues. It is 
observed that with a proper selection of the location and number of 
actuators along the beam, a lesser number of actuators than the number 
of modes in the model can control and stabilize the system. 

After establishing the controllability of the system, control gains 
are selected using the following two criteria: (i) decoupling of the 
linearized system equations with app:opriate state vnriable feedback; 
and (ii) applying the linear regulator problem to the modal coordi
nates, and thus, selecting gains by solving groups of "n" two by two 
ma~rix Ric~ati equations. 

The decoupling technique avoids modal analysis and is computa
tionally simple when the number of actuators is equal to the number 
of modes. However gain selection is poss~ble even when the number of 
actuators is different from the number of modes. The linear regulator 
application described in this report depends on an a priori modal 
analysis and the number of actuators must be equal to the number of 
modes. When the number of actuators is not equal to the number of 
modes the general linear regulator problem can still be applied 
and a 2~x2n matrix Riccati equation has to be solved for a system con
taining n modes. 

The independent modal control concept used earlier for a long 
flexible beam modelled by three discrete masses is reviewed for sta
bility when the number of actuators is less than the number of modes. 
For this case, it is seen that even though the system is controllable, 
it is not stable about the zero state vector (gives rise to a simple 
example of control spillover). It is observed that a proper control 
law not based on modal decoupling ensures stability of all the modes. 

In the present study control and observation spillover arg not 
directly considered and all states are assumed to be available (noise 
free). Selection of modes for the mathematical model is done on an 
arbitrary basis. Only point actuators are modelled. 

As an extension of th~s study, control ga~n selection usin~ pole 
allocation can be investigated. t~del reduction using energy cr 
shape of the structure as a criteria may be studied. Distributed 
actuators can also be modelled and their effectiveness can be compared 
with that of the point actuators. Control and observation spillover 
can be taken into account ~n designing state estimators and reduced 
order controller designs. 
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Appendix A 

Evaluation of Modal Mass (M ): 
n 

The shape function [~r(X)] of a free-free beam satisfy 

~IV .. \4ofJ 
r r r (A-I) 

IV d40fJr 
(where ~ = --r.-d and a similar notation denotes other ordered r "X" 
derivatives) 

with boundary conditions 

ofJ rr (0) :0 ell'" (0) 
r r (A-2) 

~"(1) :0 9"'(1) r r 

From consideration of Eqs. (A-I) and (A-2), the shape function is 
given by 

(A-3) 
ofJ (X) .,. cosh A X + cos A X - or (sinh ArX + sin Arx) r r r 

where A is given by the solution of the transcendental equation r 

and 

cos A 1. cosh A 1-1 = 0 
r r 

° .,. r 

(A-4) 

(A-5) 

We have for two different shape functions 9 ¢ correspondin£ to 
A and A r' s 
r s 

(A-oj 

¢lV = A4 ¢ 
S s s (A-7) 

Eqs. (A-6) and (A-7) can be combined as 

ofJr9s O .. 4_A4) = ¢ ¢IV _ ¢ ¢IV 
r s s r r s (A-B) 

A-I 

" 

- "'--1 

t 

.. , 



- ~".,. .. -- --- - ---- - ----- -

Integrating (A-B) by parts, 

1 [Q
s 

cp' , , - cp' cp'" - cp cp'" .. 
(~) r s r r s r s 

R. 
+ cp' r 

cp' , '] 
s 0 

.. 0 for r f: s (A-9~ 

When r .. S .. n the above integral is defined as modal mass (M ) per 
n unit density per length: 

M /p 19. cp2 dX 
(A-lO) n n 

0 

1 1 
IV d .. r,r+1 CPn 9n X 

n 0 

1 9. 1 .. 
II+ [cpn ¢'" 1 - I 

¢I' .'" dX] n 0 n n 11 0 

1 1 
= -):1+ 1 .' ." , dX (A-11) n n n 0 

1 9. R. 
= -3:4" [cp , 9"1 - I ¢" CP" dX] n n n n n 0 0 

1 R. .. ~I cp"2 dX (A-12) n n .) 

So 
9. 

4M 1 [cp; + xk- (cp" 2 - 2.' CP"')] dX (A-13) n n n n 0 n 

After substitution for ~ and its dpr~vatives into Lq. (A-l3) • n 
i 

M pI dX = p9.. n 
0 

References: 

1. R.E.D. Bishop and D.C. Johnson, The Mechanics of Vibration. 
Can:bridge Ul1ivers~ty Press, 1960, pp. 323. 

2. Pr~vate discussion with Mark J. Balas. 
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Appendix B 

The program described in this appendix solves the equations 
of the form 

where 

x .. AX + BU 

X is an n diMensional state vector 
A 
B 
U 

is an nxn matrix 
is an nxm matriA 

U is obta~ned using 
is a ~:l control -"ector. 
state variable feedback 

Le. U=GX 
using (B-2), (B-1) can be written as 

x '"' (A + BG) X 

(B-1) 

(B-2) 

One can either give (A + BG) as a single matrix to the progra~ or A, 
B, G as separate matrices. The solution is obtained u~ing the state 
transition maLr~x technique. The plotting ~3 incorpcrated in the pro
gra using the separare computer algorithm REDOK-PLOT (see program 
l~sting which follows). 
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*********~~***************~*****.******.**~***************************** •• * 
* 
* ., HOWARD UNIVERSITY -- SCHOOL OF ENGINEERING --

*~************************~*************.********.~***~******************** , .... 
6/~/7q 15:22:17 
IJOa [QEAD 1'1 AT 15:20:531 
!FORTlt/B/E/?/S FORT.LS/L 
lLISTPJG 

REDOK 

c •••• +<--------. ----------.,. -FORTRAN STATEI-lENT --------------------> 

113 
1 
C 
r: 
C 

2 

3 
C 

'5 
o 
b 
C 

7 
C 

100 
q 

11 

12 

1 ~ , 

DlvE~sInN ~(ln,10),G(10,tO),F(10,10) 

CO~~O~/REO~Y!/P(10,'0,'0),NMC(tO),ALPHA(lC},AETACtO) 

OIM~NSTO~ A(10,tO),~TGR(tO),EIGr(10),C(11),AINV(lO,10),NA~E(S) 
C1~E~SION AK(10,10},~(lO),OUMMy(10,10'5),Z(10S),FORC~(S,105) 

OI~EMSION XCI0),~I(10) 

CALL 1'10UT(5,8) 
WRITE(~,I) 

FOR~AT(5X,'A ~ATRIX IN T~E EDUN. X=AX+AU'} 
N~Di~E~SION OF 'A' MATRIX ,NP=COLU~~S OF 'q' ~ATRIX 
!F ~PCP=l E~UATION IS 'X=AX' AND NPCP=O IF X=(A+AG}X' 
CIF NPCP=l, RAND G MATRICES NEED NOT B~ GIVEN 
READCS,?l N,N?,NPCP 
FOR"'ATC3I?) 
WRITE(8,3) N,NP 
FOR~ATr2X,' Dr~~NSIO~ OF A=',I2,5~,·cnLUVNS OF ~=' ,12) 
qEAOI~G A ~ATRlx powwISE 
DO !l 1=1,111 
READ(5,5) (A(I,J),J=l,N) 
FOR"'Ai{Q>=lC.O) 
~RITE(A,~) CA(I,J),J=l,N) 
FOR~ATCcX,!O(FtO.u,2X» 

READING A MftTPIX RowwI5E 
IF(NPCP.GT.O) G070 1230 
DO 7 I=t,N 
RE~D(5,5) (BCI,J),J=l,NP) 
~PITE(3,6) (RCI,J),J=l. NP ) 
READI~G G ~ATI) OF U=GX ,RO~WT5E 

DO 8 I=1,NP 
READ!5,~) (G(I,J),J=l,N) -
~RITE(B,b) CGCI,J},J=I,N) 
DO q I=l,N 
DG q J=l,1II 
SU\i=O.O 
DOl 0 0 ", = 1 , ~I P 

SU~=Suu+~(I,M)*G(~,J) 

F C I , u ) =51)'\ 
DO 11 1=1. N 
''i:U T E ( Q , 6 ) ( r ( 1 , J) , J =! , I J ) 

DO 12 1 = 1, 'I 
DO 12 J~l,~ 
~CI,J}==(r,J)+A(I,J) 

,'IRITU::;,138) 
F"Q~AT(5X,'VATRIX A=A+?C ~HEPE U=CX 'J 
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· .... ~-------------------- . "' ... , "..... v. - __ ... 

20 

234 

'001 

'008 

200~ 

'012 

'010 

'00 3 
a 

'01 t 

?08 
.5 

?OOS 

'006 
~OO 7 
'013 

00 12') I=l,N 
WRITE(8,b) (~(I,J),J=ltN) 

RASIC ~ATRlx PROGRA~~E 

CONTTNUE 
NAI.4E OF PROG~A~I>4E-TN ' A' FORMAT 
REAO(S,2~r') (NAMECI),I=I,S) 
FOR "'ATC5~ 'J) 
KEEP A 8LANK CAPO TO GET ALL C~TIONS OF THE PRCr,RA~~E 
IOET=O PRINTS DETERYINAN~ VALUE---
INV=O PRINTS INVERSE OF A ~ATPIX 
NR~=O pCINTS PEsnLVENT ~ATRIX 
ICP=O PRI'l.JTS CI .. RCH:.RISTtC ;'OLYNO~"AL 

lEIG=O PRINTS EIGEN VALUE~ 
ISTM=O PRINTS STATe TRANSITION MATRIx 
IF A60VE PARAMETERD ~RE NOT ZERO THEN CORRESPONDI~G VALUES APE NOT 
REAO(S,201 3) IDET,INV,NRM,ICP,I[IG,:STM 
WRITE(",20 0 8) 
FOR~AT(tHt,S~,' RASIC ~ATRIX PROGRA~') 
WRITE(R,200Q) (NA Mf(I),I=I,S) 
FORVAT(6X,' PRORLE'" tNDENTIFICATIO~:',5x,SAa) 
wRITE(~,2012) 

FOR~~TCtHO,45(lH*» 
IF(IOET.~E.O) GOTO III 
D=DET(A,N) 
hRITE:.(~,2010) 

FOR~AT(lHO,SX,' DETERNIMANT OF THE ~ATRIX') 
WRITECI3,2I)O 3) D 
F "R'-1! T( 1 poE20. 7) 
IF(I~ V.NE.~) GOTO 15 
WRITE(~,2011 ) 
FOR~AT(lHO.5X,' T~E INVE~SE OF ~ATPIX ') 
CALL SIuEQ(A,C,N,AI~V,C,IERR) 
IF(IEqR.Eq.O) GOTO 15 
00 208 I=I,N 
wRITEC~,2003) (AINV(I,J),J=l,N) 
CALL CHREQ(A,~,C,NR~) 
CALL PPOOT(~,C,EIGR,EIGI,+t) 
IFCICP.NE.O) GOTO 308 
WRITE(13,2012) -
WRITEce,200s) 
r-OqVAT (' HO, 5x,· TI"lE C~APCTERST Ie POL v~lO~'1! AL-PJ ASCE'NOIII.G POtJERP 

1 OF 5') 
J\JN='IJ+ 1 
~~ITE(~,200 ,) (CCI),I=l,NN) 
IF(IEIG.NE.O GOTO 35 
I"IPlTE(8.2012J 
",PITE(F;,20n6) 
FO~~~T(t~Q,5x,' EIGEN VALU~S OF A "'ATRI~ .) 
FOR~AT(qX,'PEAL PART',RX,'I~AGI~ARY PAQT') 
~Opl,AATe6I1 ) 
wPITEeJ3,20Q7) 
00 tb 1=1,".: 
~QITE(R,201) 3) EiGP(t),EIG!CI) 
r F ( 1ST'" • "E. 0) GO r 0 "') 
CALL STAST(~,A,[IGR,ErG1,ISTM) 

\ 

t 

i 
I 

I 
t -



c •••• +<-~---------------~-- FORTRAN STATE"'ENT 

2S 
C 
C 
C 
C 
C 
C 
C 
.; 
C 

1875 

1724 
1268 

126Q 
1270 

30 
£10 
80 
20 
1725 

1726 

50 

13 
102 
101 
10 

1271 

CDNTINUE 
N=DlvENSION OF A MATRIX 
~=COLU~NS OF B MATRIX 
NC=D!~ENSID~ OF FEED8AC~ STATES 
N~RITE~O IF PRt~IING IS NEEDED 
NPLOT=O IF PLGTTING IS NEEDED 
NSEI.CT=O A l\'1 A YS 
T=INITTAL TIME 
T'-'AX=FlflJAL TIME 
XVIN="'rNrMU~ O~ SUM OF STAT~S 
READC5,t675) N~M,NC,N~RITE,NPLOT,NSELcr FOR v A TC 2 r 2, I £I, 3 I 1 ) - - --- -- - -
REAO(S,20)(XICI),I=t,Nj 
RE~D(5,20) T,TMAX,H,XMIN 
IF(NSELCT.GT.O) GOTO 172£1 
REAO(S,20) CALPHA(I),BETA(I),I=t,N) 
no t26~ 1=1,'-1 
REAOCS,20t CAKCI-,J),J=liN) - - - - -
WRITE(R,aOl CXI(I),r=l,~) 
wRITEc~,ao) T,TMAX,H,XMIN 
WRITE(A,aO) CALP~ACt),BETA(I),I=t,N' 
\~'HTE(A,t~70) 
00 126Q J=t,N 
wqITE(~,ao) (AKCI,J),I=t,U) 
FORMATC2X,'K ~ATRIX wRITTEN COLUMN WISE') 
IF(~S€LCT.GT.O) GOTD 1725 
REAnc~,80) (N~C(I),I=l,~) 
00 30 I=t,N 
DO 10 J=l,N 
R~AO(5,20) (P(J,J;K),K=l,N) 
Fo~~~r(2X,lP6E20.7) 
F 0 C Or ~ rc 3 () It) 
F'C04AT(8FtO.O) 
;)0 1721, NVr<=l,N 
DO 1726 N""L=l,N 
WPITE(A,aO) CP(NMK,NVL,N"'M),N~~=l,fIJ) 
NIA~J= t 
00 10 J=!,N 
X(J)=O.O 
00 tOll = 1 , ~ 
A8P=~LPHA(I)·T 

- I~(A9P.GT.l00.0.0R.ABP.~T.-l00.G) GOTO tOt DO 11)2 K=l,N 
IF(N~C(I).E~.O) GOTa 13 
X(J):XCJ)+P(I,J,K)*LX~(ALPYAC!)*T)*COS(gETA(r)*T)*XIC~) GOTD 102 
XrJ):xeJ)+PCI,J,K)*EXPCALPHACI)*Tl*SIN(RETACI)*T)*XICK) COr-.:TI NLJE 
CONT 1 ~JUE 
CO\ TI 'J'JE 
DO 127\ 1=1,\A 
\)(1):0.0 
DO 1271 J=t,r.... 
ueI}:X(J).!K(I,JJ+U(I) 
1)01371 K=I,"" 
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c •••• +<--~----------------- FORTRAN STATE~E~T 

1371 FORCE(K,NYN)=U(KJ 
IF(NwRITf.GT.O) GorO 1000 
WRITECS,t03) T,eXCJ),J=liN},CtlCI1',I=1,"4) . 

103 FCRMAT(2X,lP8Elb.5) 
tuOO CONTPIUr: 

DO 1272 l=t,"I 
1272 OU~"4V(r,N~N)=X(I) 

SUM=O.I) 
-. _ .. DO 70 \41.'=1, N 

70 SUM=SU~+X(~Ml**2 

T=T+H 
NMN=N"'N+l 
Ir(SU~.LT.XYIN.OR.T.GT.TYAX) GOTO ~Q 
GOTO 50 

61) CuNTI:'oJlJE 
CALL FOPE~(l,"DPO:REDOK") 
wQITE eINA~V(11N,NC,M 
hRITE gINARY(l) «DU~~Y(I,J),J=1,NC1,I=1,N) 
~RITE BINARY(t) «FORC~!!,Jl,J=l,~C),I=l,M) 
CALL FCLOSE(t) 
GOTO 11 3 

1420 STOP 
END 

-.. I :. 
l . "-

---------------~----> , 



c •••• +<------ ___ • _________ _ FORT:1AN 
-----~--------------> 

c 
c 

SU6ROUTI~E CHREQ(A/~/C/~pU) 
THIS S~~~JUTINE FINDS THE COEFFICIENTS O~ TH~ CHARACTERISTIC POLY 
NO~IAL USING THE LEVERRIER ALGORITHM 
CO~~ON Z~OC10,1.A,10) 

o I~E,JS I ON A C1 0,1") , C (11) , A TEMP C1 0,10', PRO~ (10,10' 
-1000 FORI,IATC1HO,5~t -TilE MATRIX CCEFFICENTS OF THE NUMERATOR-OF TH~ RESO-

1001 
10"2 
1003 
C 

lLVENT '-4UPIX ') 
FORMAT(lHO,5X,'THE MATRIX COEFFICENTS OF S',Il/) 
FOR"" A (( t P6~20. 7)- -- - -
FOQM~TCIHo,a5(tH*) 

REPLACI~G T~R DATA CARD DATA ATEMP/I00*O.OI 
DOt 3 1 5 I =-1 , 1(. - - - - -

00 1315 J=! ·to 
1315 ATEMPCI,;'-0 n 

bS 
70 

80 

CALL CH~ ',.;. I N,C) 
00 65 1=' , 
ATEMP(!,! ;.) 
00 80 1=1, t~ 
00 80 J=l,'" 
ZEO(N,I,J)=~TEMP(I,J) 
IF(~R~.NE.O) GOTD 71 
WRITE(~,10n 3) 
",RIT': (~, t 1)00) 

M=N ·1 
WRITECR,100t' M 
00 35 J=t,N 

3S WRITE(~,lC02) (ATEMP(I!"J)Y~J=t,N) 
SYNTAX IN iRPQQ, PU~CTUATIO~ ~ISSING, OR IOENTIFIEP OF WRONG VARIETY----~-
71 DO ~n r=t,~ 

ao 

as 
60 

15 

13 
SI) 
10 

1)0 ao J=l,N 
ATE~PCr,J):::A(I,J) 

1)0 10 I=1,N 
NN"l:N-I 
IF(I.EQ.t) GO TO 55 
IF(~R~.NE.O) GOTO 60 
WRITE(8,100t) NNN 
00 US J=l,1IJ 
~RITE(8,10n2' (ATEMP(J,K),K=I,N) 
,,-/P=N'IINtl 
on 90 II=I,N 
00 90 J=l,N 
ZED(NP,I!,J,=ATEVP(II,J) 
DO 15 J=I,1II 
DO 15 1<'=1,"1 
PQ OO(J,'O:::0.0 
DO 15 L=1,"" 
PROO(J,~)=PPOO(J,K)+(A(J,L)*ATE~P{L,K» 

DO 1 :; J= 1 , 'J 
DO 1 :; I( = t , ~J 
ATEVP(J,~)=PPOD(J,K) 

no 1 (J J::: 1 , " 
ATE~P(J,J)=ATEVP(J,J1+C(~-I+l) 
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.... +<--~----------------- FORTRAN STATEMENT 

'0 

3 

,0 

SUBROUTI~E CH~RQACA,N,C) 
OI~ENSION J(11),CCtl),8CtO,tO),A(lO,lO),DC 
NN=N+l 
00 20 I=l,NN 
C(I)=O.O 
C (N~J) = 1 .0 -
DO lq M=t,N 
K=O 
L=l 
J(1) =1 
GOTO 2 

--J(Ll=JCL)+1 
.IFCL-M) 3,5,50 
MM=M-l 
DO a I=L,MM 
II=I + 1 
J (II) =J ( I ) + t 
00 10 J=l,M -
00 10 KI(=l,'" 
NR::J (!) 
NC=J(I(K) 
BCI,~K)=A(NQ,NC) 

K=Kt1 
OCK)=DET(B,"') 
00 0 1=1,'" 
L="'-I+t 

... 

... --- -- -- - ... 

- _.. -.- -_.. .-

IF(J(L)-C~-~+L» 1,6,50 -
CaNTIN UE 
Ml=N-"I+l 
00 14 I=1,1( 

14 C(Ml)=C(~l)+DCI)~(-t.O)**M 
RETURI-J 

SO WRITE(8,2000) 
~ooo FORYAT(lHO,5X,· ERROR IN CHREQA ') 

RETURN 
- --END -

--------------------> 
300) 



-~--~~---.-------~--> · .. +<~-------~-----~----- FORTRAN STATEMfNT 

) 

r 
) 

1 

FUNCTtO~ DETCA,~C) 
THIS FUNCTIO~ SUBPROGRAM FINDS THE OETER~INANT OF A MATRIX 
US ING '01 AGONAL ISUION PROCEOURE . ----. . 
DI~ENSION Al10,10),BCI0,10) 
IQEV=O 
001 1=1,I(C .---- ....... ---

--_ ....... - - -- r • "" •• --- • 

00 1 J.:t,KC 
B(I,J):ACI,J) 

. 00 20 1=1 ,Ke .-------, -----
K=I . 

---- _ .. _---.-----

IF(BCK,I» 10,11,10 .. 
I(-::K + 1 --.- - ------. 
IF(K-KC) Q,Q,Sl 
IF (l-K) 12,1 th 5 1 
DO 1 3 M=1,KC- ----;-- .--------- --_.-" ----

TEMP=BCI,M) 
B(I,M}=B(K,PJ) 
B (K-, M) =TP'P- -
IREV-::IREV+t 
II=!t1 
IF(ll.GT.KC} GOTD 20 
00 17 PJ=II,KC 
IF(B(M,I» 1Q ,17,1Q 
lE~P:8CM,I)/B(I,I) 
00 16 N=I,I<C 
B(M,N)=8(M,N)-BCI,N)*TE~P 
CONTINUE 
CONTINUE 
DEl=1. 
DO 2 1=1,I<C 
DET=DET*BCI,Il 
DET=C-l)**IREV*DET 
RETURIIl 
DET=O.O 
RETURN 

'END 
----- -- -----_. 

- .. -. -- -----_. --- -



c •••• +<-------------~------ ~ORTRAN STATE~ENT ---------------~----> 

c 
c 

1 

3 
2 

1002 

Q 

5 
6 

7 
8 

q 
10 

11 

12 

13 

20 

21 

SUBROUTI~E PROOTCN,A,U,V,IR) 
THIS SU9ROUTINE USES A ~OOIFIED BARSTO~ ~ETHnO TO FINO THE QOOTS 
OF A POLYNO .... IAL. 
DIMENSION A(20),U(20),V(20),HC21),8(21),C(21t 
IREV=IR _40 

NC =N + 1 - - - - ---
DO 1 I=I,NC 
H(l)=A(I) 
P=O.o 
Q=O. 
R=O. 
IF(H(1l) lJ,2,LI 
NC=NC-1 
V(NC):O. 
U(NC):O. 
DO 1002 1=1 ,~:C 
H(I):HCI+l) 
GOTD 3 
IF(NC-t) 5,100,5 
IFCNC-2) 7,6,7 
R=-H(11/H(Z) 
GOTO SO 
IF(NC-3) Q,8,Q 
P:H(2)/HC3) 
Q=H(l)/H(3) 
GOTD 70 
IF(A6S(H(NC-1)/H(NC»-ABS(HC2)/H(t») 10,IQ,lQ 
IREV:-IREV 
I.4:NCI2 
DO 11 1=1,"
NL=~C-I+l 
F=HCN:..) 
H (NU =H (I) 
H CI) =F 
IF(Q) 13,12,13 
p:o. 
GOTO 15 
P=P/Q 
Q=1./f'J 
IF(R) 16,lQ,t6 
R=l./R 
E:S.E-l0 
B("JC':H(NC) 
C(NC):H(NC) 
1:H~C+l )=0. 
C(NC+I)=O. 
f\JP=o\JC-l 
no lIq J:l,101)0 
on 21 I1=\,NP 
I ='IC-11 
R(Il=H(I)+R*~(!.I) 

C(I)=SC1)+~·C(I+l) 
IF(~~5(q(1)/H(\»-E) SO,~O,211 

IFCC(2» 23,22,23 
B-9 
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: .... +<----------------~--- FORTRA~ STATEMeNT 

~3 
50 

35 

30 

50 

51 

52 
53 
5Ll 

70 

71 

72 

73 

74 

75 
80 

81 
82 

76 
77 

R:R+l 
GOTO 30 
R:R-F3(t)/CC21-
00 37 It=t,NP 
I=NC-It 

. -_. _. _ ... -

8CI):HCI1-P*B(I+ll-Q*BCI+2) 
C(I);8(I)-P*C(I+Il-Q*CCI+2) 
IF~H(21) 32,31,32 
IFCABS(8C2)/H(I»-E) 33,33,34 
IF(A~S(BC2)/H(2»-El 33,33,3Ll 
IFCABS(gCl)/H(l»-E) 70,70,3Ll 
C8AR=C(2)-'3(2) 
D=C(3)**2-CAAR*CCll) 
IF(D) 3b,35,36 
P=P-2 - -
a:Q*UH1. ) 
GOTO llq 

--.. ~ - -- _ . .... ~ .. ----. 

P=P+CB(2)*C(3l-BC1)*CC ll »)/O 
Q=Q+C_~(2)*CAAR+B(t)*CC3)1/D 
CONTINUE 
E=E*tO. 
GDTD 20 
r-lC=NC-l 
V(NC):O. 
I~(IREV) 51,52,52 
U(NC)=l./R 
GOTD 53 
U(NC)=Q 
DO 511 I=l,NC 
H(1)='3CI+l) 

GOTD " 
NC:Nr.-2 
IF(IR£V) 71,72,72 
QP=l./('J 
PP:P/(Q*2.0) 
GOTO 73 
QP:~ 

PP=P/2. 
F=CPP}**2-QP- - _. --------- -- - - -- -- -

IF(F) 71J,75,75 
UC~C+l)=-PP 
UCNC):-po 
veNC+t )=SQ~T(-Fl 
VCNC)=-V(NC+t) 
GOTO 76 
IFCPP) Rl,80,Pl 
U(~C+l):-S~RT( F) 
GOT 0 8 2 .- - -- - - - -
U(NC+l)=_(PP/A6S(PP)}.(ABS(PP}+SQRT(F» 
CONTl"JUE 
V(NCYll:O. 
U(NC)=r)P/U(NC+t) 
V p:C) =0. 
00 77 I=l,~~C 
H(I)=B(I+21 

B-IO 

--------------------> 

\ 

l:. 
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: .. ~ .. <--~-~~-----~---~---- FORTRAN ST A TE"'E~I r .---------------_.--> 
GOTO lJ 

00 RETUtH,J 
ENO .... 

. . #_-------::-- .. _---- --- ... - ,--.-.. -- .. " ..... ~ ... ~ ..... 

B-ll 

-~ ---:...---- ----------...-,....,-----

t 
t-



... +<---"------------_._- FORTRA~ STATEYENT ------~------~~-~-~-> 

)00 
)01 

)02 
)03 

loa 
)05 

)0 

00 
5 

00 
00 
00 
00 
10 

o 

50 

o 

'5 

,0 

SUBROUTINE STMST(N,A,EIGR,EIGT,IKNO~) 
THIS SURROUTINE OETER~INES THE STATE TRANSITON MATRIX USING 

SYLVESTER'S EXPANSION THEORE~ 

COMMON CHI(lO,10,10) 
CO~MON/REDOYI/P(10&JO.I01.N~C(10),ALPHA(10)

,BET~(lQ) 

DIMENSION A(10,10),EIGRCtO),EIGICI0),SPS(tO,tO) 

COMPLEX CA(10,10),CA1(10,\0),CA2(10,tO),TCA(10,tO),OENO~(10),CE
IG( 

110) 
I~N=t . 0 - - - ___________ .-_ - - - -- -. - -. 

-- o. -0 -.- - o. ---.--

FOR~ATCtHO,5X,'THE ELF.~ENTS OF THE STATE TRAS!TION MATRIX') 

FOR~AT(lHO,5X,'THE MAjRIX COEFFICENTS OF EXPC',tPE13.6,'T*COSC', 

lt P E13.b,')T')- ---_. ---- ------

FORMATCtPbE20.7) 
FORMAT(1HO.SX,'THE MATRIX COEFFICIENT OFEXPC',lPE13.6,"T*SINC',IP 

1 E t 3. b, ') T') 0 - 0 - ._-- ---- - - - -.- --

----

FORMATC1HO,5Y,'THE ~ATRIX COEFFICIENT OF E~PC',tPE13.6,')T') 

FORVAT(tHO,a5(lHk» 
IFCIK~OW.NE.O) GOTO ~OO 

WRITE(A,lOOS) 
DO 10 K=t,N 
CEIG(K)=C~PLX(EIGR(Kl,EIGICK1) 

00 10 L=l,N 
CA(K,L)=C~PLX(A(K,L),O.O) 

1=1 
IFCIKNOW.NE.O) GOTO 700 
WRITE(S,lOOO) 
DO 15 K=1,N 
OENOM(K)=CEIGCI1-CF.IG(K) 
DO 500--J=1,~J 

IF(J-Il 100,500,200 
IFCJ-l) 1'0,110,150 
IF(I-l) 300,300,aoo 
IF(J·I-l) 110,110,150 
IF(J-I-tl 110,150,150 
DO 5 1(=1,~) 

DO 5 L=I,~ 
CA1(I(,Ll=CA(K,L) 
DO 20 K=l,"1 
CAt(K,K)=CA(K-,I()·CF.:lGCJ)---~ -.. - --- -

DO 20 L=l,"1 
CA1(~,L)=CA1(K,L)/DENO~CJ) 

GOTO 500 - - - - --
DO !l0 K=t,N 
1)0 ao L=l,~l 

~A?(I'(,L)=CACK,L) 

DO 25 I(=t,~ 

CA2(K,K)=CA(K,K)-CE!GeJ) 
DO 2C; l=1,"-I 
CA2(~,Ll=CA2(K,L)/DENO~(J) 

DO }O K=l,N 
DO 30 L = 1 , ~J 
TCA(~,L)=(O.O,O.O) 

00 3 0 .. , = 1 , ,,1 
TCA('<,L)=TC u (V,L)+C A1(K,M)*C A2CU,L) 

B-12 
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c ••.• +<-------·-----··----- FORTRAN STATEuFNT 

35 
300 

1.15 

801 

65 

66 

1100 

80 

802 

55 

56 

1110 

15 

.0 

01.1 

o 

00 35 K=l,N 
DO 31i L=l,N 
CA1(~,L)=TCA(K,L) 

CONTINUE 
_a 

IF(AI~AGCCEIG(I») 1.15,50,1.15 
1"'=1 - - - - - - ~ .. -----
1=1+1 
ALPHA(IMN)=E1GP(I) 

·"BETA(IMN)=EIGI(I)- .--- --~ 

-

N"'C CI~N) =1 
IFCIKNOW.NE.O) GOTO 80t 
WRITE(8,1001) E I GR ( I) , E I G I (I) 

DO 65 K=l,N 
DO 65 L=l.N 
SPS(K,L)=REALCCAl(K,L»*2.0 
00 66 K=t,N 
00 bb L=l,N 
CH1(I~,K,L)=SPS(K,L) 

CONTINUE 
DO 11 00 J=l,N 
00 11 00 l<:t,N 
PCIMN,J,K)=SPSeJ,K) 
I "'''l=P' tJ+1 
IFCIK"'O~.NE.O) GO TO A02 
00 60 K=l,1\! 
I'JRITEC8,1002) CSPS(K,L).L:t,N) 
ALPHA(I"'N):EIGP(I) 
6ETA(I~N):EIGI(I) 

NMCCPIN)=O 
WRITEC8,1003j fI GP ( 1) , E I G I ( ! ) 
DO 55 K=l,N 
00 55 L=l,tJ 
SPS(K,L)=AIYAG(CAl(K,L»*2.0 
DO 56 K=I,N 
DO 5b L=l,N 
CHICI,K,l)=SPS(K,l) -
CONTINUE 
DC 1111) J::l,N 
00 111 0 K:l,1'1-- -~--- _ .. -
P(I~N,J,K)=SPS(J,K) 

I , .. N = I '., N + 1 
IF C I I< NO~I. NE. 0) GOTO bOO 
00 85 K:l,N 
WOITE(B,1002) (SPS(I<,l) ,L=t ,N) 
GOTO bOO 
CO~JTI NUE 
ALPHACIVN)=EIGR(I) 
AETA<IVN)=O.O 
N'.AC (J pnJ) = 1 
IFCIKNOl'J.NE.O) GO TO 804 
1'1 RITE ( ~ , 1 0 0 I.l ) EIGR(I) 
on. 60 l(~l,N 

1)0 60 L=l,N 
SPS(~,L)=QEAL(CAl(K,L» 

DO 61 K:l,N 
B-13 
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---------_ ... -,.- ~ .. -...,-- ..... ------- '" - - .. -.- --- - - _ .. - - ..... ~ ~----- _ .. -----
.. - ~ -

c •••• t<-----------------.-- FORTRAN STATE~ENT -.--~----~----------> 

61 

00 61 L=l,N 
CHICI,K,Ll=SPSCK,Ll 
CONTINUE 
00 1120 J=l,N 
DO 1120 K=l,N'" 

1120 P(I:-.I"I,J,K)=SPSeJ,K)- ----------
1',1 N = p.4 r.a 1 

.. _. - - .. .. -

IFCIKNOW.NE.O) GOTO 600 
---- 00 75 K::1,~~ -- ----- -" ---- -----.- .---

75 WRITE(8,1002) (SPSCK,L),L=l,N) 
600 rFCI.GE.N) RETURN 

-- I = I +, - ------ -- --j -- --

GOTa 700 
Er~o 

B-14 
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c •••• +<-~--·--------~------ FOPTR A·J 51' A TEr.oE'NT ------.~--------~---> 

c 
c 

1 

2 

b 
c: 

5 

7 
8 
Q 

10 

12 

13 

1ll 
15 

17 
16 
:) 

51 
52 

SUBROUTI~E SIMEQ(A,XDOT,KC,AINV,X,~~RR) 
THIS 5U~ROUTI~;E I I NOS THE I MVERSE' Of THE' "ATR I X A 115ING 
oIAGO~ALIZATION PROCEOUPE5 
DIMENSION A(10,tO),B(10,10"XOOT(111,X(11),AI~V(JO,10) 
N=1 .~ 
IERR=l 
00 1 1=1,I<C 
00 1 J=t,I<C 

--AINVCI ,J) =0-;- --- ----- --- --- ---- '-- - . -- - -
B(!,J)=4(I,J) 
DO 2 1=1,'<C 
AINVCI,!)=l. 
XCI'=lCOOTCI) 
DO 3 I=l,KC 
COMP=O. 
K=I 
IF(ASS(~(~,I»-ABS(COM?:l 5,5,a 
C0\1P=8CI{,11 
N=K 
K:r(+l 
IF(K-KC) 6,6,1 
IF(8(N,I» 8,51,e 
IFCN-l) 51,t2,Q 
DO 10 M=l,I<C 
TE\1P=8CI,"j 
BCI,\1):B(N, .... ) 
B (~,,...) =TP·IP 
TEI-~P=A PIV (I. M) 

A I N V ( I , •. q = A I ~J V ( n , M ) 

APIV(N,··l)=TE~'? 
TEI-IP:;X(!) 
X(Il=XfN) 
X(N)=TE"'P 
X(l)=XC!)/8(I,I) 
TErJP=iH I,I) 
00 13 .... :1,KC 
AI~V(I,M)=AINV(I,M1/TE~? 

8(I,~)=g(r,M1/TE~P 

DO 16 J=lt~'C 
IF(J-Il 1ll,16,14 
IFC8(J,J» lS,lb,15 
X(J):xeJ'-9(J,4)*xeI) 
TE"'?::i3 (J, 1) 
o Q 1 7 .~ = 1 , K C 
AJ./lIV(J,t )-:AHIV(J,rJ)-TE'''P*q~V(I,~J)' 
B{J,~1)=3(J,'J)-TEI)r *C(I,N) 
COl\;ftNIJ~ 

CO'J i 1 flUe: 
REnJ~~1 

'" q : T ~ ( ~ , 5 2 ) 
FOR"~~(6X,'T~E 

IF:PP=O 
RETuo'l 
€I'd) 

~ATPIX IS SI~GULAP ') 
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* 

2/28/7q 12:t2:2? 
-i J6B - (RF ~O f~A-T -12· Q: 5F--R:':DOI( -PLfJ T P~O-GPA \A 

!rORr/A/6/E/P/S FORT.LS/L 
!LISTING -& 

---.-----.---------~> 
c ::: NTH E D A T A CAR 0 IRE ~ 0 S TAT E MEN T ~i A 0 Eel DES f1 E GIN t N G 0 F )( A "J 0 x 0 j r 

CURVES ,N=O S~IPS ALL X-CURVES VA DEC1~ES 8EGINI~G OF FORCE CURVES 
__ c ___ S~IPS ALL FOQCE CURVES. IF N.~~.O AN~ M.NF..I DECIOES HO~ ~A"JY FO 

C -OEFLECTIONCURVES T~t:Y tlEED 
DI~E~SION DU~vY(10,t05),FORCE(S,105),Z(105) 

t.lLL PJOUT (2,8) 
'---C ACCF (fpE ~ (r,-IID:-:p::-O::-:-:R::-E=CD=-O=-t<~I1":'") ------------ -----------

REAO 8I~AqY(1) NX,NC,MX 
REAl) gp.lAC?Y(l) «Ou ...... V(I,J)"J=t,'IC),I=t,NX) 
READ 8INA~(1) (FORCE(I,J),J=l,~C),I=t,VX) 

CALL FCLOSE(t) 
REAO(2,267S) N~,N,\AA,~ 

-2b7~ -FQP~AT(aI2j- ------~~-----.-------------------------
IF(~.En.o) GOTO 2676 ______ n~o 127a r=1,~~~ _________________________ _ 
OCft2fS"-J:i , /~r 

1275 Z(J):()'J'..1'Ay(t,J) 
Z/olAX=Z(l) 

··ZM1"=Z C t )--- --

DO 1 276 ! J = 1 ,~: C 
tF(Z~AX.LT.Z(!J+t») GOTO 1277 

-- --- G-O r o-i ~ If A - . --

t277 Z~~X=Z(IJ+t) 

--------_. -_. - ._--

1288 IF(ZYI~.LT.Z(tJ_+~1~)~)~G_a~T~O_~1~2~7~6 _____________________ _ 
--- - .-- -Z'1.I~=Z (IJ+ I) _.-

1276 CO~JTINUE 

___ -=I::....F:.~ A'3SJ Z-..4 ~L r.r • ASS (Z'!J~I)) GOIO 61711 
ZVA:t=A9SCZ0.4IN) 
GO TO b37q 

_03? 8 p" r ~'\I..:: -: to I; S_(p .. 1 A ~J __________________ _ 
b37q CO'lTINUE 

WRITE(A,tS01) Z~AX,zvI~ 

_____ .f. A l.,=--£,.5£ 1~J ~-,_2) ___ -:----,-:-_______ . ______ _ 
CALL PLoxCZ~IN,Z,ZMAX,~C) 
CALL °lOGOcn.O,b.O) 

__ t.2! ~_~_Q~r.T ~I.,IE __ _ 
2076 CON T t ';IJE 

IF(v.E~.O) GOTQ laiD 
____ ~I) ~_l 3 7l?-.1_=. ~ '. L,~I ;;--_______________________________ _ 

I) 0 1 3 7 7 J =! , 1'-' C 
1377 Z(J)=F~RCE(I,J) 

Z'"'.n=Z(1) _._.--- Z'AI'J-:-zeff---

--- - ------_._. ----------------------------_._-------------

---------- -------------------3..--""1-,.6---

• 

, . 

'\ 

I' 

t 

I 
/ 

r, 

I 

.~ 

I. 



~ •••• +< ______ h ____________ _ 

00 137$:\ IJK=t ,NC 
IF(l~A~.LT.Z(IJK+l» GOrO 137q 

I GOTO 13~O 

--------.----------

137q 7MAX=Z(IJ~~+~1~)~-----13 J3 0 :r F ( Z"I f-.J:TI • l-H J r( + 1 ) J--=.;,-:::::~7,-:~,.--,!,-:3:-:7:-:8:---------------------ZMIN=lCr.lKtl) 
1 :;7~ CONrt ·JUr: 

IF(AgS(Z"lAX).GT.ABSCZ~IN)j GOTO b3~O Z~AX=A8S(Z\1IN) 

, 
'''' . I 

\ 
t 

GOTO 6391 -----6~3~8~C~~Z~MI:~=-A~~S~(~Z~"I~A~X~)~-----------------------------------------------6381 eOtIT! NUE 
____ -,.-.,,::-:--= __ ...:.W:..-R~ITE (9, t 51) 1) ZMAX, Z'.4IN \ 50 t FOR.YA ( ~x, • **lMAX:', 1;:20.7, 3x, , **I.""IN:' , E?O. 7) CALL PGRID(O,2) 

CALL PlnX(ZMI~,Z,l"lAX,NCl ----------C~AL[-PLOG~(O.O,6.01 
1376 CONTT~IIJE 
ll1tO CONTI:l.JIJE' 

CALL E-X fr 
ENO 



Appendix C 

The program described in this appendix solves the non-linear 
equations of motion of the beam in orbit incorporating the control 
laws obtained using the linearized model. 

It can plot defl~ction of the bea~ at various instants of 
time with control and the time history of actuator forces required. 

Data cards to be given are explained in the program by means 
of comment cards. A listing of this program follows. 
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HOWARD UNIVfQSITY -- SCHOOL OF ENGINEERING --

****************************** •• ****-************************************. 

6/7" 15:33:8 _ 
'OB [REAO PJ AT 15:32:161 
ORT IA/B/E/P/S FOPT .LS/L - ---- -
ISTI~G 

... +<-------------------- --FOPTRAN STATE~E~T --------------------> _ .. 
EXiEq~AL FCT,OUTP 
CO~~ON/REDD/AO~EGA(tO),DAMPC10),WC,N~ODES,LNEAP,NACT,NSELCT,ISTATE 
COMMO~/REO/Z(10,20) 

COM~ON/REnOO/FREg(10),Q(~~),NPONTS,AL(20),ISELCT,NPLOT,NWRITE 
CO~~ON/RAJ/Q4\Xl,n4IN1 

COM~O~/A~AM/PTTCH(100),NPK,QSyALL 

COM~ON/QEJA/AKC5,tO),F(5,tOO),FF(tOO) 

COMI.\I)~/'<I\I/IMULT 

DIMENSrnN y(~O),OERY(~O),AIIX(EI,201,A(a)rI3Cll),C(£I),PP ... T(5) 
DIME~SI0~ SIlE(10) 
CALL INf)UT(5,A) 
CONTINUE 
C~LL PLOGO(O.O,b.O) 
Q"'AX\=O.I) 
NPK=O 
av,IN1=O.') 
wC=OqqITAL FRQU~NCY,TOL=TOLqERANCE FOR RUNGE-~UTTA SUBROUTINE, 
QS~ALL=S~ALLEST VALUE OF DEFLECTIO~ ALOhG THE REA'· TO STOP PLOTTI~ 
SIZECIl-\lAXlvlj"" VALUES OF STATES FOR RIjNGE-KUTTA ROUTINE 
A04EG~(1) FRnUE~CY VALUES 
PQ~T(ll=I~ifiAL TI~E, PRYT(2)=FINAL TI~E,PRMT(3)=INCREMENT 
Z(~,~l=FEEn~AC~ GAIN MATRIX 
FRED] I) __ FQEQUE~JCY VALUES--
ALCI1 ___ POSITrONS ALONG THE SEAM AT ~HIC~ DEFLECTION IS CALUCULATE 
REAO(S,9000) WC,TOL,DSMALL 

NSELCT=O IF OEFLECTION PLOTS ARE NEEOED AT O~E PLACE OTHEPwISE O~E 
N~ODES=NU~~~R OF MODES CONSIDEQED INCLUDING PITCH 
~IPON T S =\I'JMA ER OF PO I til T 5-- AL ONG Tt-JE - 8E AM 
ISELCT=TIME INTERVAL SELCTION OF PLOTING 
NPLOT=t IF PLOTTING IS ~EEDEO OTt-JERwISE ZEPn 
~I :'1 RITE = 1 I F i"l Q IT rr J GIS NEE 0 E 0 a THE R HIS E' Z E R 0 
~L~EAR=t IF E~UATIONS ARE NON LINEAR OT~ER~JSE ZERO 
QS~ALL=QU~NTTTY DEFINING T~E S~ALLEST YAXYVUv DEFLECTION ONE H~NTS 

TO PLOT (OEFINI~G PQACTICAL ZERO) 
NACT=~UM~~q OF ACTUl7~~S 

NACT=O T~E~ DATA CARDS FOR AK(I,J) NEE'O ~OT Rf SUPPLI~O 

CC~TQOL FOPCES CAN NOT gE PLOTTEn IF NACT=O 
ISTArE=~O. OF. STATES CONSr"EQED FOQ FEED~ACK 

gEADCS,QnlU) NVODES,NPONTS,ISELCT,~Pl~T,N~~ITf,~L~'EA~,NACT,~SFLCT 

1,ISTATI;:,I'AULT 
IKK=2"~I"('f)ES 

C-2 



FORTRA~ ST4T£MENT 

FOR"'~TC3FI0.0) 
FOR~~T(2X,12,2(E13.b,2X)/} 

FOR"'AT(?X,b(Et3.b,2X)/) 
FOR~AT(50X,'SIZE VALUES') 
FOP"'ATCC;OX, 'FQr~ENCIES') 

--------~-~---------> 
9000 
9003 
9004 
9005 
9006 
9007-
9008 
9011 
9123 
9001 

FOR~4T(20X,4PAPA~ETERS:INITIAL TIME,FINAL TI~E,J~TERVAL') 
FOR"'AT(SOX,'IHITIAL VALUES') 
FORMAT(20X,'Z-80TTO~ PART Oc A-MATRIX') 

. FOR~AT(SOX,"NU"'8ER OF 8ISECTIO~S',I2) 
FOR"'AT(8FIO.0) 
READ(S,qOot) (SIZECt),I=l,IKK) 
READCS,Q001) (AO~EGACi),I=I,NMOOESl 
READCS,90011 (PRMTCt),I=t,3) 
REAOCS,QOOtl (Y(I),I=l,IKK) 
CO 108 M=l,~~ODES 

108 PEA~(5,QOOt) CZCM,N),~=l,tKK) 

9014 FOR~AT(2I~,I«,bI2,Ia) 
- READC5,QOOt) '(FPE~HI),y=t,"J/JODES) 

READCS,QOOt) (AL(Y),I=l,NPONTS) 
WRITECI3,9031 ) 

9031 FOR~AT(tOX,'VALUES OF K MATRIX") 
IF(NACT.EQ.O) GOTQ Q037 
00 q 030 1=1 , ~I ACT 
REAO(S,QO~t) (AK(I,J),J~I,ISTATE) 

9030 WRITEC9,90041 CAKCI,J),J=1,ISTATE) 
9037 cONTPWe 

WRIT~(3,9003) ~vonEs,xc,TOL 

WRITE(A,900S1 
WRITE(~,~On4) CSIZECI),I=l,IKK) 
WRITE(Q,QOOb) 
wRITEC~,q00~) (AOvEGlCI),r=l,N MOOES) 
wRITE(8,QO(l7) 
wRITE(~,Oooa) (PP~T(I),I=1,3) 

~qtTE(~,Q008) 

WRITE(~,Qooa) (YCIl,I=l,IKK) 
wPITEC8,QOl1 ) 
DO 90t3 M=l,N~QOES 
wRITE(8,Qooa) (Z(~,~),~=I,IKK) 

<?013 CONTINUE 
JF(NS~LCT.~Q.t) GOTO q042 
CALL PGRID(O,2) 

QOU2 CONTINUJ: 
CALL RKSCl(IKK,SIZE,OEPV,TOL,PR~rl 
C~Ll RI(GS(PQ ... ·T,Y,OE::?y,I'<K,Il-IlF,Frr,QUTP,AUX) 
P~AX=PITCI-I( 1) 
P\AIN:PITCH(11 
DO 0015 IL=2,tJPI( 
IF(P~4~.LT.PITCI-IC!L» GOTD q016 
GOTO 9017 

901b P~~X=PITCH(IL) 
q017 I~(?VIN.LT.PITCH(IL)) GOTD QOt5 

P~I\I=PlrCI..4(Il) 

Q 0 1 5 CON r PI'J F 
IF(~~S(O"A\().GT.AaS(O"'I'IJ)) GOTO Ql)lP. 
PMAX:AQS(P'-'Pl) 
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c •••• +<--~-----~----------- FOQTRAN STATE~ENr --------------------> 

~020 

~OU3 

1022 

02a 
025 

023 

026 
027 

035 

OUl! 

021 

)33 

)32 
)36 

GOTO 901Q 
PMPJ=-P\AAX 
CONTWUE 
tIRITE(8,9020) PM.~,PMIN 
FORMATCtOX,·**PMAX=·,E13.6.SX,'**P~IN=·,E13.61 
IFCNSELCT.EQ.!l GOTO-9(}(t3--- -----
CALL PLOGOeO.0,u.7S) 
CALL PLOGO(0.0,t.2S) 
CALL PGRIOCO,2)-
CALL PLOX(PMIN,PITCH,PMAX,NPK) 
WRITEC8,9t23) r~LF 
FFMAX 1=0. 0 ------ - - -._-
FFMIN1=O.i) 
IF(NACT.E~.O) GOTO 9036 
DO 9021 1=1,NACT 
DO 9022 J=l,NPK 
FF(J)=F(1,J) 
FFMAX=FF(t) -
FFMIN=FF(l) 
DO 9023 II=1,NP~ 

IF{FFMAX.LT.FF(II+1» GOTU Q02" 
GOTO 902S 
F F fA A X = F F ( II + 1 ) 
IF(FF~I~.LT.FF(II+l» GOTO Q023 
FF"11 N=FF (II + 1) 
CaNT fII/UE 
IF(~B5CFF~A~).GT.ARS(FFMIN» Goro 9026 
FFf..'AX=A 95 (FFIo.11 N) 
GOTO 9027 
FFMIN=-A6S\FF~AX) 

CONTI IIJUE 

_ .. __ --z 

WRITE(~,9Q35) FFMAX,FFMIN 
FOR~ATC2X,·~*FFYAX=',E13.6,SX,'**FFMIN=',El~.6) 
IF(NSELCT.EQ.l) GOTO 90"£1 
CALL PLaGO(0.O,u.7S) 
CALL PLOGO(0.O,I.25) 
CALL PGQrOCO,2) 
C~LL PLOX(FFYIN,F-,FF~AX,NPK) 

CONTINUE - - -----
wRITE(8,Q033) 
FORvATC2X,'VALUES OF FORCES STARTING AT T~rE=O.O') 
DO 9032 J=l,NPK 
wRITEC~,900U) C FCI,J),I=l,NACT) 
CIJNT I 'JI/E 
GOrD 9001 
CO~TINUE 
STOP 
E"ID 
IST!rE=~O. OF. STATES CONSIDERED FOR FEEDAACK 

Q E A 0 ( '5 , 90 1 !l) ~I v 0 DES , ~~ p 0 "J r S , IS E LeT, '\! P L nT, N:I Q I T E , ~J L ~I E A P , ~J ACT, 'J S E L C r 
1, IS fA 0::, r-"'JL T 

I K K = '" ~ ~J .) 0 I) E S 
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: .... +<-------------------- FORrRA~ ST~TE~ENT --------------------> 
SURROUTt~E FCTCX,Y,OERY) 
COM:-e0t-J/PEDO/AOME~}(lO),DAMP(10),\ttC,N",.OOES,L~F:r.R,N'ACr,NSELeT 
cnMMO~/REDIZ(10,20) 

CO~~ON/REJA/A~C~,10),F(5,tOO),FF(tOO) 
CO~MON/KIM/r""ULT 

OIMENSlu~ Y(20),OERYC20),AUXC8,20),A(U),8(a),c(a),pp~TC5) 
IF(~LNEAR.EQ.O) GOTO ta 
Z(I,I):-I.~*SI~(2.*Y(1» 
00 10 1=2, ~1""OOES 
Z(I,I)=-«AO~EGA(I»**2/CWC •• 2)-e3.*(CSIN(Y(1)})**2)-1.)-«YC~~ODt 

15+1) II'IC-l) ""2» 
10 CONTINIJE 

GOTO IS 
a Z(1,1)~-3.0*V(1) 

00 16 I=2,N\40DES 
6 ZeI,Il=-(AOMEGACI»**2/(WC**2) 
5 C(I'IIT HJIJE 

DO 11 r=l,~\1(lDr:S 
1 DERYeI)=Y(I+N~OOES) 

3 
2 

PITCH EOUA T I O~J 

P-JKC=N\'OOES+ 1 
OERY(~~C)=Z(l,l).Z(t,NKC)*YCNKC) 
no 12 I=2,N~orES 
IJ=I+NvOOt:S 
II(=2*N IA OOES 
OEPYO J)=().o 
00 13 J:-l,Tk 
OEPY(IJ)=OE~Y(IJ)+Z(I,J)*Y(J) 
CONTPIVE 
CO:\jTI"IUE 
RFTURN 
END 
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.... +<--~----------------- FORTRAN STATE~ENT --------_ .. ---------> 

01 
3 

5 

SU8ROUTI~E OUTPCX,y,OERy,IHLF,NnIM,PR~T) 

LOGICAL RKNXT 
COMMON/REOO/AO~EGA(10),DA~P(10),WC,~~C~ES,LNcAP,NACT,NSELCT,ISTATE 
CO~~ON/REDDO/FPEa(10),Q(20),NPONTS,AL(?O),ISELCT,NPLOT,N~RITE 

COMMON/RAJ/a~AX1~~M!Nt . 
CO~MaN/BEA~/PITCH(100),NPK,QSMALL 
COM~ON/REJA/AKCS,10),F(S,100),FFCI00) 

CO~~ON/~l~/I~ULT 
DIMENSION" Y(20),OERY(~O}·,AtJXC8,20)-;A({J)-,B(11),C(4),PRI.4TCS) _. - .. ----
IF(.NOT.R~NXT(IHLF» GOTO 2 
IF(NWRITE.EQ.O) GOTO 13 
WRITE(8,Q01) X,CY(I),I=l,NDI~l 
FORMAT(2X,FI0.3,bCEI3.b,2X» 
COI>JTINUE 
IJK=2*NMODES 
ISS=ISTATE/2 
tF(NPLOTeEq.O) GOTO 12 
I"'ULT=II.4UlT+l 
IFCIMULT.EQ.l) GOTO !1 
Ix=I .... ULT/ISELCT 
IM=IX*ISELCT 
IFCIM.EQ.I~ULT) GOTO 11 
GOTD 1? 

t 1 CONTI r-JUE 
NPK:NPK+l 
PITCH(~PK)=YCl ) 
IFCNACT.EQ.O) GOTO 16 
on la TAC=l,tJACT 
FCIAC,".IP")=O.O 
Of) 15 JK=t,rSs 
F(IAC,NP~)=F(IAC,NPK)+AK(rAC,JK)*Y(JK} 

CONTI"lUE 
00 19 JKN=t,ISS 
FCIAC,NPK):F(IAC,NPK)+AK(IAC,JKN+ISS).YeJKN+NMOOES) 
CONTI ~IIJE 
CONTINUE 
CONTINUE 
00 lJ J:t,NPO~TS 

Q(J):fl.O 
DO 3 I=2,"lMODES 
COSHN=(~XP(FREQ(t))+EXP(-FqEQ(t)))/2. 

SI~H~=C~XP(FREQ(I»)-EXPC-FQEQ(I»)/2. 

COS~~L=(EXP(FPcQ(I)*AL(J»+EXP(-FPEQ(I)*Al(J»)/2. 
srNHhL:(EXP(FqE~(I)*ALCJ)}-EXP(-FREq(Il*AL(J)')/2. 
OUPl=(COS(FQEQ(I»-COSHW)/(SIN~~-SIN(FREQ(I»)) 
OUP2=sr~(FREq(Il*AL(J»+St~~~L 
0IJP3=COSCFPEQrI>*AL(J})+COSHWL 
DUP=OUP1*DUP2~DUP3 
QCJ,=OCJ)+YC!)*DUP 
CO'JTI"l'-'~ 
CO~JT r 'JUE 
OI.4AX=I](t) 
O"'I~I=t)(t) 

I) 0 5 "-1 = t , ~J P n "J T S 
C-6 

r 
I '1 

j 

EE:::-;;:;:-.==~&=i::!,!::=:ZZ::.~~::: j-;==t;; ~;;=t;;=-;:=-;E"-"':;:?=,,:=::-==".e, ... :5;;;i::·~~'::~'::'::::/1.~!~~~::-5::~tf~£:Jt~·rz:;ztla-:::z:tl--r~.;;~~r:cc;-r::=::i~:;-..,:a;"""::lKA:.i'~;::::;''!1::;:''''''''iSi:2:ieC:O::: #::*:;:ZZZ:E£iX~::!iiillll:l'$Q!:q=_z:::lIPWi':!!iiliI::II4.~di!!ib.JJ 



FORTRAN STATEMENT 

IF(QYAX.LT.Q(M+l) GOTO b 
GOTO 7 -~ 
Q'A A X = I) C ,-, + 1 ) 
IF(QMIN.LT.Q(u+t» GOTO 5 
QMIN=IJC"'.l) 
CONTIMUE 
WRITE(a,l~) nVAX,QMIN 

.. ------------------> 

8 FOR~"TC20X,'Q"'AX=',E13.6,'QvIN=·,E13.6,'**IN THIS CASE') 
IF(ABS(Q~AX).Gr.A8SCQYIN» GOTO 8 
QMAX=AHS(Q~t~J) 

GOTO q 
ClMIN=-AASCQ Y 4X) 
CONTI NIJE 
IF(A8s(n~AX).LT.OSYALL) GOTO 12 
IF(Q"'AX.GT.OMAXl) GOTD 1910 
QVAX=QY"Xl 
a""PJ=-g~A)( 1 
GOTO t Q 1 t 

Q10 a:"'AXt=q'AAX 
911 CONTI NUt 

WQITECA,101 AYAX,QMIN 
o FOR~AT(tOX,'**QvAX=',E13.6,5X,·**O~tN=·,E13.6) 

IF(NSELCT.En.O) GOrO 17 
CALL PLOGO(O.O,1.2S) 
CALL PSIZE(~.O,1.0) 
CALL PG~II')(O,2) 

7 CONT I ~IUE 
CALL PLnX(~YIN,Q,Q~AX,NpnNTS) 

2 CO~JT pJIJ:: 
CONTINUE 
PETUR~J 

END 
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End of Document 


