8 research outputs found

    The H Lyman-? actinic flux in the middle atmosphere

    No full text
    International audienceThe penetration of solar H Lyman-a radiation into the terrestrial middle atmosphere is studied in detail. The Lyman-a actinic flux is calculated with a Monte Carlo approach including multiple resonance scattering of Lyman-a photons within the terrestrial atmosphere and a temperature dependent absorption cross section of molecular oxygen. The dependence of the actinic flux on the temperature profile is significant for O2 column densities greater than about 1024 m-2. For column densities greater than about 5 · 1024 m-2 resonance scattering becomes important at solar zenith angles > 60°. The \OD\ quantum yield of the O2 dissociation by Lyman-aphotons is found to decrease from 0.58 in the lower thermosphere to 0.48 in the lower mesosphere. Parameterisations for Lyman-a actinic flux, mean O2 absorption cross section and \OD\quantum yield including temperature dependence and resonance scattering are given valid up to a O2 column density of about 1025 m-2

    Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances

    Get PDF
    Time series of total column abundances of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) were determined from ground-based Fourier transform infrared (FTIR) spectra recorded at 17 sites belonging to the Network for the Detection of Atmospheric Composition Change (NDACC) and located between 80.05°N and 77.82°S. By providing such a near-global overview on ground-based measurements of the two major stratospheric chlorine reservoir species, HCl and ClONO2, the present study is able to confirm the decrease of the atmospheric inorganic chlorine abundance during the last few years. This decrease is expected following the 1987 Montreal Protocol and its amendments and adjustments, where restrictions and a subsequent phase-out of the prominent anthropogenic chlorine source gases (solvents, chlorofluorocarbons) were agreed upon to enable a stabilisation and recovery of the stratospheric ozone layer. The atmospheric fluorine content is expected to be influenced by the Montreal Protocol, too, because most of the banned anthropogenic gases also represent important fluorine sources. But many of the substitutes to the banned gases also contain fluorine so that the HF total column abundance is expected to have continued to increase during the last few years. The measurements are compared with calculations from five different models: the two-dimensional Bremen model, the two chemistry-transport models KASIMA and SLIMCAT, and the two chemistry-climate models EMAC and SOCOL. Thereby, the ability of the models to reproduce the absolute total column amounts, the seasonal cycles, and the temporal evolution found in the FTIR measurements is investigated and inter-compared. This is especially interesting because the models have different architectures. The overall agreement between the measurements and models for the total column abundances and the seasonal cycles is good. Linear trends of HCl, ClONO2, and HF are calculated from both measurement and model time series data, with a focus on the time range 2000–2009. This period is chosen because from most of the measurement sites taking part in this study, data are available during these years. The precision of the trends is estimated with the bootstrap resampling method. The sensitivity of the trend results with respect to the fitting function, the time of year chosen and time series length is investigated, as well as a bias due to the irregular sampling of the measurements. The measurements and model results investigated here agree qualitatively on a decrease of the chlorine species by around 1%yr-1. The models simulate an increase of HF of around 1%yr-1. This also agrees well with most of the measurements, but some of the FTIR series in the Northern Hemisphere show a stabilisation or even a decrease in the last few years. In general, for all three gases, the measured trends vary more strongly with latitude and hemisphere than the modelled trends. Relative to the FTIR measurements, the models tend to underestimate the decreasing chlorine trends and to overestimate the fluorine increase in the Northern Hemisphere. At most sites, the models simulate a stronger decrease of ClONO2 than of HCl. In the FTIR measurements, this difference between the trends of HCl and ClONO2 depends strongly on latitude, especially in the Northern Hemisphere.Peer reviewe

    Validation of MIPAS ClONO<sub>2</sub> measurements

    No full text
    International audienceAltitude profiles of ClONO2 retrieved with the IMK (Institut für Meteorologie und Klimaforschung) science-oriented data processor from MIPAS/Envisat (Michelson Interferometer for Passive Atmospheric Sounding on Envisat) mid-infrared limb emission measurements between July 2002 and March 2004 have been validated by comparison with balloon-borne (Mark IV, FIRS2, MIPAS-B), airborne (MIPAS-STR), ground-based (Spitsbergen, Thule, Kiruna, Harestua, Jungfraujoch, Izaña, Wollongong, Lauder), and spaceborne (ACE-FTS) observations. With few exceptions we found very good agreement between these instruments and MIPAS with no evidence for any bias in most cases and altitude regions. For balloon-borne measurements typical absolute mean differences are below 0.05 ppbv over the whole altitude range from 10 to 39 km. In case of ACE-FTS observations mean differences are below 0.03 ppbv for observations below 26 km. Above this altitude the comparison with ACE-FTS is affected by the photochemically induced diurnal variation of ClONO2. Correction for this by use of a chemical transport model led to an overcompensation of the photochemical effect by up to 0.1 ppbv at altitudes of 30?35 km in case of MIPAS-ACE-FTS comparisons while for the balloon-borne observations no such inconsistency has been detected. The comparison of MIPAS derived total column amounts with ground-based observations revealed no significant bias in the MIPAS data. Mean differences between MIPAS and FTIR column abundances are 0.11±0.12×1014 cm?2 (1.0±1.1%) and ?0.09±0.19×1014 cm?2 (?0.8±1.7%), depending on the coincidence criterion applied. ?2 tests have been performed to assess the combined precision estimates of MIPAS and the related instruments. When no exact coincidences were available as in case of MIPAS ? FTIR or MIPAS ? ACE-FTS comparisons it has been necessary to take into consideration a coincidence error term to account for ?2 deviations. From the resulting ?2 profiles there is no evidence for a systematic over/underestimation of the MIPAS random error analysis
    corecore