26 research outputs found

    Labrets: piercing and stretching on the northwest coast and in amazonia

    Get PDF
    This article examines the practice of piercing and stretching the lip in order to accommodate a labret in two regions: the North American Northwest Coast (with historical examples from Tlingit and Haida groups) and lowland South America (utilizing ethnographic writings on Suya and Kayapo communities). Drawing on the recent ‘sensorial turn’ within anthropology, I suggest an approach which goes beyond considerations of the symbolism of body ornaments and analyses how the infliction of pain they involve can be manipulated to serve social ends at a local level. Also discussed is the use of labrets within global ‘mediascapes’ (Appadurai 1996) by Kayapo and Northwest Coast groups in the context of self-representation and the politicization of ‘culture’ (Wright 1998).This article examines the practice of piercing and stretching the lip in order to accommodate a labret in two regions: the North American Northwest Coast (with historical examples from Tlingit and Haida groups) and lowland South America (utilizing ethnographic writings on Suya and Kayapo communities). Drawing on the recent ‘sensorial turn’ within anthropology, I suggest an approach which goes beyond considerations of the symbolism of body ornaments and analyses how the infliction of pain they involve can be manipulated to serve social ends at a local level. Also discussed is the use of labrets within global ‘mediascapes’ (Appadurai 1996) by Kayapo and Northwest Coast groups in the context of self-representation and the politicization of ‘culture’ (Wright 1998)

    Effect of Ca2+ on the Steady-State and Time-Resolved Emission Properties of the Genetically Encoded Fluorescent Sensor CatchER

    Get PDF
    We previously designed a calcium sensor CatchER (a GFP-based Calcium sensor for detecting high concentrations in the high calcium concentration environment such as ER) with a capability for monitoring calcium ion responses in various types of cells. Calcium binding to CatchER induces the ratiometric changes in the absorption spectra, as well as an increase in fluorescence emission at 510 nm upon excitation at both 395 and 488 nm. Here, we have applied the combination of the steady-state and time-resolved optical methods and Hydrogen/Deuterium isotope exchange to understand the origin of such calcium-induced optical property changes of CatchER. We first demonstrated that calcium binding results in a 44% mean fluorescence lifetime increase of the indirectly excited anionic chromophore. Thus, CatchER is the first protein-based calcium indicator with the single fluorescent moiety to show the direct correlation between the lifetime and calcium binding. Calcium exhibits a strong inhibition on the excited-state proton transfer nonadiabatic geminate recombination in protic (vs deuteric) medium. Analysis of CatchER crystal structures and the MD simulations reveal the proton transfer mechanism in which the disrupted proton migration path in CatchER is rescued by calcium binding. Our finding provides important insights for a strategy to design calcium sensors and suggests that CatchER could be a useful probe for FLIM imaging of calcium in situ

    Application of Designed Calcium Sensors with Fast Kinetic Responses

    Get PDF

    Quantitative Historical Analysis Uncovers a Single Dimension of Complexity that Structures Global Variation in Human Social Organization

    Get PDF
    Do human societies from around the world exhibit similarities in the way that they are structured, and show commonalities in the ways that they have evolved? These are long-standing questions that have proven difficult to answer. To test between competing hypotheses, we constructed a massive repository of historical and archaeological information known as “Seshat: Global History Databank.” We systematically coded data on 414 societies from 30 regions around the world spanning the last 10,000 years. We were able to capture information on 51 variables reflecting nine characteristics of human societies, such as social scale, economy, features of governance, and information systems. Our analyses revealed that these different characteristics show strong relationships with each other and that a single principal component captures around three-quarters of the observed variation. Furthermore, we found that different characteristics of social complexity are highly predictable across different world regions. These results suggest that key aspects of social organization are functionally related and do indeed coevolve in predictable ways. Our findings highlight the power of the sciences and humanities working together to rigorously test hypotheses about general rules that may have shaped human history

    Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization.

    Get PDF
    Do human societies from around the world exhibit similarities in the way that they are structured, and show commonalities in the ways that they have evolved? These are long-standing questions that have proven difficult to answer. To test between competing hypotheses, we constructed a massive repository of historical and archaeological information known as "Seshat: Global History Databank." We systematically coded data on 414 societies from 30 regions around the world spanning the last 10,000 years. We were able to capture information on 51 variables reflecting nine characteristics of human societies, such as social scale, economy, features of governance, and information systems. Our analyses revealed that these different characteristics show strong relationships with each other and that a single principal component captures around three-quarters of the observed variation. Furthermore, we found that different characteristics of social complexity are highly predictable across different world regions. These results suggest that key aspects of social organization are functionally related and do indeed coevolve in predictable ways. Our findings highlight the power of the sciences and humanities working together to rigorously test hypotheses about general rules that may have shaped human history

    Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization

    Get PDF
    Do human societies from around the world exhibit similarities in the way that they are structured, and show commonalities in the ways that they have evolved? These are long-standing questions that have proven difficult to answer. To test between competing hypotheses, we constructed a massive repository of historical and archaeological information known as “Seshat: Global History Databank.” We systematically coded data on 414 societies from 30 regions around the world spanning the last 10,000 years. We were able to capture information on 51 variables reflecting nine characteristics of human societies, such as social scale, economy, features of governance, and information systems. Our analyses revealed that these different characteristics show strong relationships with each other and that a single principal component captures around three-quarters of the observed variation. Furthermore, we found that different characteristics of social complexity are highly predictable across different world regions. These results suggest that key aspects of social organization are functionally related and do indeed coevolve in predictable ways. Our findings highlight the power of the sciences and humanities working together to rigorously test hypotheses about general rules that may have shaped human history.This work was supported by a John Templeton Foundation Grant (to the Evolution Institute) entitled “Axial-Age Religions and the Z-Curve of Human Egalitarianism,” a Tricoastal Foundation Grant (to the Evolution Institute) entitled “The Deep Roots of the Modern World: The Cultural Evolution of Economic Growth and Political Stability,” Economic and Social Research Council Large Grant REF RES-060-25-0085 entitled “Ritual, Community, and Conflict,” an Advanced Grant from the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme Grant 694986, and Grant 644055 from the European Union’s Horizon 2020 Research and Innovation Programme (ALIGNED; www.aligned-project.eu). T.E.C. is supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement 716212).Peer Reviewe

    Calcium Dynamics Mediated by the Endoplasmic/Sarcoplasmic Reticulum and Related Diseases

    No full text
    The flow of intracellular calcium (Ca2+) is critical for the activation and regulation of important biological events that are required in living organisms. As the major Ca2+ repositories inside the cell, the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of muscle cells are central in maintaining and amplifying the intracellular Ca2+ signal. The morphology of these organelles, along with the distribution of key calcium-binding proteins (CaBPs), regulatory proteins, pumps, and receptors fundamentally impact the local and global differences in Ca2+ release kinetics. In this review, we will discuss the structural and morphological differences between the ER and SR and how they influence localized Ca2+ release, related diseases, and the need for targeted genetically encoded calcium indicators (GECIs) to study these events
    corecore