27 research outputs found

    A closer look at neuron interaction with track-etched microporous membranes

    Get PDF
    Microporous membranes support the growth of neurites into and through micro-channels, providing a different type of neural growth platform to conventional dish cultures. Microporous membranes are used to support various types of culture, however, the role of pore diameter in relation to neurite growth through the membrane has not been well characterised. In this study, the human cell line (SH-SY5Y) was differentiated into neuron-like cells and cultured on track-etched microporous membranes with pore and channel diameters selected to accommodate neurite width (0.8 µm to 5 µm). Whilst neurites extended through all pore diameters, the extent of neurite coverage on the non-seeded side of the membranes after 5 days in culture was found to be directly proportional to channel diameter. Neurite growth through membrane pores reduced significantly when neural cultures were non-confluent. Scanning electron microscopy revealed that neurites bridged pores and circumnavigated pore edges – such that the overall likelihood of a neurite entering a pore channel was decreased. These findings highlight the role of pore diameter, cell sheet confluence and contact guidance in directing neurite growth through pores and may be useful in applications that seek to use physical substrates to maintain separate neural populations whilst permitting neurite contact between cultures

    Using Glycosaminoglycan/Chemokine Interactions for the Long-Term Delivery of 5P12-RANTES in HIV Prevention

    No full text
    5P12-RANTES is a recently developed chemokine analogue that has shown high level protection from SHIV infection in macaques. However, the feasibility of using 5P12-RANTES as a long-term HIV prevention agent has not been explored partially due to the lack of available delivery devices that can easily be modified for long-term release profiles. Glycosaminoglycans (GAGs) have been known for their affinity for various cytokines and chemokines, including native RANTES, or CCL5. In this work, we investigated used of GAGs in generating a chemokine drug delivery device. Initial studies used surface plasmon resonance analysis to characterize and compare the affinities of different GAGs to 5P12-RANTES. These different GAGs were then incorporated into drug delivery polymeric hydrogels to engineer sustained release of the chemokines. In vitro release studies of 5P12-RANTES from the resulting polymers were performed, and we found that 5P12-RANTES release from these polymers can be controlled by the amount and type of GAG incorporated. Polymer disks containing GAGs with stronger affinity to 5P12-RANTES resulted in more sustained and longer term release than did polymer disks containing GAGs with weaker 5P12-RANTES affinity. Similar trends were observed by varying the amount of GAGs incorporated into the delivery system. 5P12-RANTES released from these polymers demonstrated good levels of CCR5 blocking, retaining activity even after 30 days of incubation
    corecore