9 research outputs found

    Anatomical variations and dimensions of arteries in the anterior part of the circle of Willis

    Get PDF
    Background: The aim of this study was to investigate different anatomic variations and dimensions of anterior part of the circle of Willis (CW) and their prevalence on Kosovo’s population. Materials and methods: This is an observational descriptive and retrospective study performed at the University Clinical Centre, Clinic of Radiology. The three-dimensional time-of-flight technique was used for magnetic resonance angio- graphy imaging to evaluate the anatomy of the CW in 513 adults without clinical manifestations for cerebrovascular disease. The diameters of arteries of the CW were measured and variations were recorded.  Results: The complete anterior part of CW was found in 64.3% of cases, more evident in female at about 66% than male 62.2%. Morphologic variations of the ACA1 are agenesis or hypoplasia in 5.65%, fusion of the anterior cerebral arteries (ACAs) on a short distance in 6.5% and fusion of the ACA on a long distance in 2.5%, median ACA is presented in 11 examined patients or 2.1%. Normal anterior communicating artery (ACoA) was seen in 68.2%, hypoplasia or absence 15.66%, double ACoA in 0.6% and fenestrations in 3.89%. The mean calibrations of the vessels were measured as 2.04 mm in right A1, 2.06 mm in left A1 and 1.16 mm of ACoA. While, 14.1 mm length of right A1, 13.87 mm of left A1 and 2.99 mm of ACoA.  Conclusions: Knowledge of the variations and diameter of the anterior part of the CW has a great importance in determination of anatomical variations and diameter in general populations, also, in interventional radiology for various endovascular interventions as well as during anatomy lessons.

    Arterial supply of the trigeminal ganglion, a micromorphological study

    Get PDF
    Background: In this study, we explored the specific microanatomical properties of the trigeminal ganglion (TG) blood supply and its close neurovascular relationships with the surrounding vessels. Possible clinical implications have been discussed. Materials and methods: The internal carotid and maxillary arteries of 25 adult and 4 foetal heads were injected with a 10% mixture of India ink and gelatin, and their TGs subsequently underwent microdissection, observation and morphometry under a stereoscopic microscope. Results: The number of trigeminal arteries varied between 3 and 5 (mean 3.34), originating from 2 or 3 of the following sources: the inferolateral trunk (ILT) (100%), the meningohypophyseal trunk (MHT) (100%), and from the middle meningeal artery (MMA) (92%). In total, the mean diameter of the trigeminal branches was 0.222 mm. The trigeminal branch of the ILT supplied medial and middle parts of the TG, the branch of the MHT supplied the medial part of the TG, and the branch of the MMA supplied the lateral part of the TG. Additional arteries for the TG emerged from the dural vascular plexus and the vascular network of the plexal segment of the trigeminal nerve. Uniform and specific intraganglionic dense capillary network was observed for each sensory trigeminal neuron. Conclusions: The reported features of the TG vasculature could be implied in a safer setting for surgical approach to the skull base, in relation to the surrounding structures. The morphometric data on TG vasculature provide anatomical basis for better understanding the complex TG blood supply from the internal and external carotid arteries

    Enhancing joint reconstruction and segmentation with non-convex Bregman iteration

    Get PDF
    All imaging modalities such as computed tomography (CT), emission tomography and magnetic resonance imaging (MRI) require a reconstruction approach to produce an image. A common image processing task for applications that utilise those modalities is image segmentation, typically performed posterior to the reconstruction. We explore a new approach that combines reconstruction and segmentation in a unified framework. We derive a variational model that consists of a total variation regularised reconstruction from undersampled measurements and a Chan-Vese based segmentation. We extend the variational regularisation scheme to a Bregman iteration framework to improve the reconstruction and therefore the segmentation. We develop a novel alternating minimisation scheme that solves the non-convex optimisation problem with provable convergence guarantees. Our results for synthetic and real data show that both reconstruction and segmentation are improved compared to the classical sequential approach

    Joint Phase Reconstruction and Magnitude Segmentation from Velocity-Encoded MRI Data

    No full text
    Velocity-encoded MRI is an imaging technique used in different areas to assess flow motion. Some applications include medical imaging such as cardiovascular blood flow studies, and industrial settings in the areas of rheology, pipe flows, and reactor hydrodynamics, where the goal is to characterise dynamic components of some quantity of interest. The problem of estimating velocities from such measurements is a nonlinear dynamic inverse problem. To retrieve time-dependent velocity information, careful mathematical modelling and appropriate regularisation is required. In this work, we use an optimisation algorithm based on non-convex Bregman iteration to jointly estimate velocity-, magnitude- and segmentation-information for the application of bubbly flow imaging. Furthermore, we demonstrate through numerical experiments on synthetic and real data that the joint model improves velocity, magnitude and segmentation over a classical sequential approach
    corecore