15 research outputs found

    Spectroscopic investigations of the magnetic anisotropy of lanthanide- and cobalt-based molecular nanomagnets

    Get PDF
    Single-molecule magnets are metal complexes exhibiting an energy barrier for spin reversal, leading to magnetic bistability and slow relaxation of the magnetization. Their potential for practical applications such as high-density magnetic data storage was recognized early on and with the goal of achieving high energy barriers, different kinds of single-molecule magnets have been synthesized. The quadratic dependence of the barrier height on the spin motivated chemists to synthesize metal complexes with very high total spins; however, with limited success. It was shown that high spins come along with low anisotropies and increased interest thus focused on the synthesis and investigation of (mononuclear) complexes of highly anisotropic metal centers, e.g. lanthanide or cobalt complexes. Although rather high energy barriers can be achieved in such systems, practical application remains problematic and has not been realized yet. Reasons are for example the lack of rational design criteria and the complex interplay of different magnetic relaxation pathways. The aim of this work was therefore the comprehensive magnetic and spectroscopic investigation of selected molecular lanthanide and cobalt compounds in order to obtain a deeper insight into the correlation of molecular and electronic structures as well as the corresponding magnetic properties. The applied spectroscopic methods included electron paramagnetic resonance spectroscopy, far-infrared spectroscopy and optical methods. Special emphasis was placed on magnetic circular dichroism (MCD) spectroscopy, which served as a main tool for electronic structure determination. However, since the MCD-spectrometer was not part of the available experimental equipment at the University of Stuttgart, its design, setup and characterization were the first part of this work. In the further course of this work MCD-spectroscopy was employed for the electronic structure determination of selected lanthanide and cobalt compounds. The studied lanthanide compounds were literature-known molecular tetra-carbonates of erbium (1-Er) and dysprosium (1-Dy). Detailed magnetometric studies showed that both 1-Er and 1-Dy are field-induced single-molecule magnets; however, 1-Er and 1-Dy show significant differences in their magnetic relaxation behavior. The magnetic studies were complemented by detailed spectroscopic investigations.The combination of far-infrared-, luminescence- and MCD-spectroscopy allowed for the experimental determination of 48 energy levels for 1-Er and 55 levels for 1-Dy, which built the foundation for the subsequent crystal field analysis and electronic structure determination. In addition, the results of EPR-spectroscopic studies were used for fine-tuning and verifying the respectively determined crystal field parameters. Calculating the magnetic dipole strengths for transitions between the relevant states led to a quantitative understanding of the magnetic relaxation pathways. Besides the investigation of lanthanide compounds, this thesis deals with two classes of cobalt complexes. The first class comprises mononuclear complexes in which one Co(II) ion is ligated by the nitrogen donors of two doubly deprotonated 1,2-bis(methanesulfonamido)-benzene-ligands. Rather acute N-Co-N bite angles indicate strong deviations from ideal tetrahedral symmetry. The static magnetic properties hint at very high energy barriers for spin reversal and with the help of far-infrared spectroscopy, largely negative axial zero-field splitting parameters were determined. The corresponding energy barriers belong to the highest ever reported for 3d-transition metal complexes and investigating the dynamic magnetic properties confirmed single-molecule magnet behavior. The unique magnetic properties were fully explained by analyzing spectroscopic results. The MCD-spectra showed intense signals that were assigned to spin-allowed d-d-transitions. Subsequent crystal field analysis revealed that the strong axial crystal field generated by the ligands leads to a large splitting of the electronic terms and thus in turn to a relatively small energy gap between the electronic ground state and the first excited state. The resulting increase in second-order spin-orbit coupling explains the high energy barriers observed in the studied complexes. The second class of cobalt compounds studied in this work included dimers of distorted octahedrally coordinated Co(II) ions bridged by symmetrical or asymmetrical quinone based bridging ligands. The main focus of investigation lay on the impact of the bridging ligand on the magnetic coupling between the cobalt centers. Thus, the magnetic properties of the complexes were studied with the help of static susceptibility and magnetization measurements and analyzed by means of different models. Depending on the bridging ligand, different signs for the exchange coupling constants were found. The varying signs can be explained by different relative contributions of possible exchange paths, influenced by the different substituents at the bridging ligands or slight geometry differences. The observations indicate that electron withdrawing substituents favor ferromagnetic couplings, which are preferred in the context of molecular magnetism. All in all, it can be concluded that this work provides a contribution to the deeper understanding of the features relevant for single-molecule magnets. The electronic structure determination for selected lanthanide and cobalt complexes applying advanced magnetometric and spectroscopic techniques not only led to an understanding of the static and dynamic magnetic properties but also allowed for the development of design criteria and new approaches for improved single-molecule magnets in the future.Als EinzelmolekĂŒlmagneten werden Metall-Komplexe bezeichnet, welche aufgrund einer Energiebarriere fĂŒr Spin-Umkehr magnetische BistabilitĂ€t aufweisen. Schnell wurde deren praktisches Potential im Gebiet der magnetischen Datenspeicherung erkannt und mit dem Ziel hoher Energiebarrieren wurde eine Vielzahl verschiedener EinzelmolekĂŒlmagnete synthetisiert. Die quadratische AbhĂ€ngigkeit der Energiebarriere vom Elektronenspin motivierte zur Synthese von Metall-Komplexen mit hohen Gesamtspins, allerdings mit lediglich mĂ€ĂŸigem Erfolg. Es wurde gezeigt, dass hohe Spins tendenziell niedrige Anisotropien mit sich bringen, woraufhin sich vermehrtes Interesse der Synthese und Untersuchung von Metall-Komplexen mit stark anisotropen Metall-Zentren, wie zum Beispiel Lanthanoid(III)- oder Cobalt(II)-Ionen, zuwandte. Obwohl in derartigen Systemen bereits sehr hohe Energiebarrieren erreicht werden konnten, ist die praktische Anwendung problematisch und bisher nicht realisiert. GrĂŒnde hierfĂŒr sind zum Beispiel das Fehlen rationaler Design-Kriterien und das komplexe Zusammenspiel verschiedener magnetischer Relaxationsmechanismen. Ziel dieser Arbeit war deshalb die umfassende magnetische und spektroskopische Untersuchung ausgewĂ€hlter molekularer Lanthanoid- und Cobalt-Verbindungen, um damit zum tieferen VerstĂ€ndnis der ZusammenhĂ€nge zwischen molekularer und elektronischer Struktur sowie den magnetischen Eigenschaften beizutragen. Die eingesetzten spektroskopischen Methoden umfassten Elektronenspinresonanz-Spektroskopie, Ferninfrarot-Spektroskopie sowie optische Methoden. Hervorzuheben ist hierbei die magnetische Zirkulardichroismus-Spektroskopie (MCD-Spektroskopie), die einen wesentlichen Beitrag zur AufklĂ€rung der vorliegenden elektronischen Strukturen lieferte. Da das verwendete MCD-Spektrometer nicht von Beginn an Teil der Ausstattung war, ist dessen Design, Aufbau sowie Charakterisierung als erster Teil der vorliegenden Arbeit anzusehen. Im weiteren Verlauf dieser Arbeit wurde die MCD-Spektroskopie als eine der wesentlichen Methoden zur AufklĂ€rung der elektronischen Struktur ausgewĂ€hlter Lanthanoid(III)- und Cobalt(II)-Komplexe eingesetzt. Bei den untersuchten Lanthanoid-Verbindungen handelte es sich um literaturbekannte molekulare Tetra-Carbonate des Erbiums (1-Er) und des Dysprosiums (1-Dy), deren magnetischen Eigenschaften im Detail untersucht wurden. Sowohl 1-Er als auch 1-Dy sind sogenannte feld-induzierte EinzelmolekĂŒlmagneten, jedoch zeigen 1-Er und 1-Dy gravierende Unterschiede im magnetischen Relaxationsverhalten. Die magnetometrischen Messungen wurden durch detaillierte spektroskopische Untersuchungen ergĂ€nzt. Die Kombination von Ferninfrarot-, Lumineszenz- und MCD-Spektroskopie erlaubte die experimentelle Bestimmung von 48 Energieniveaus fĂŒr 1-Er und 55 Niveaus fĂŒr 1-Dy, welche die Grundlage fĂŒr die anschließende Kristallfeldanalyse zur Bestimmung der elektronischen Strukturen bildeten. ZusĂ€tzlich dienten die Ergebnisse ESR-spektroskopischer Untersuchungen zur Feinabstimmung und Verifizierung der jeweils bestimmten Kristallfeldparameter. Die Kristallfeldanalyse fĂŒhrte zu verlĂ€sslichen ParametersĂ€tzen, die zufriedenstellende Simulationen aller experimentellen Daten erlaubten. Durch Berechnung der magnetischen DipolstĂ€rken fĂŒr ÜbergĂ€nge zwischen den relevanten Niveaus konnte ein quantitatives VerstĂ€ndnis des Relaxationsverhaltens gewonnen werden. Neben der Untersuchung der Lanthanoid-Carbonate befasste sich diese Arbeit mit Cobalt-Komplexen, welche in zwei Klassen unterteilt werden können. Die erste Klasse beinhaltete einkernige Komplexe, in welchen jeweils ein Co(II)-Ion von den Stickstoff-Donoren zweier zweifach deprotonierter 1,2-Bis(methansulfonamido)benzol-Liganden koordiniert wird. Mit verhĂ€ltnismĂ€ĂŸig kleinen N-Co-N-Winkeln sind die Koordinationssymmetrien im Vergleich zu idealer tetraedrischer Symmetrie stark verzerrt. Die statischen magnetischen Eigenschaften deuteten auf sehr hohe Energiebarrieren fĂŒr die Spin-Umkehr hin und mit Hilfe der Ferninfrarot-Spektroskopie konnten stark negative Anisotropie-Parameter bestimmt werden. Die zugehörigen Energiebarrieren gehören zu den höchsten bisher veröffentlichten Energiebarrieren for Co(II)-Komplexe und tatsĂ€chlich bestĂ€tigte die Untersuchung der dynamischen magnetischen Eigenschaften das Vorliegen von EinzelmolekĂŒlmagneten. Die einzigartigen magnetischen Eigenschaften konnten durch Auswertung spektroskopischer Daten erfolgreich erklĂ€rt werden. Die MCD-Spektren wiesen intensive Signale auf, welche spin-erlaubten d-d-ÜbergĂ€ngen zugeordnet werden konnten. Die anschließende Kristallfeldanalyse verdeutlichte, dass das von den Liganden erzeugte stark axiale Kristallfeld zu einer starken Aufspaltung der elektronischen Terme fĂŒhrt, wodurch eine verhĂ€ltnismĂ€ĂŸig geringe Energiedifferenz zwischen dem elektronischem Grundzustand und dem ersten angeregten Zustand resultiert. Die dadurch bedingte verstĂ€rkte Spin-Bahn-Kopplung zweiter Ordnung erklĂ€rt die beobachteten hohen Energiebarrieren. Die zweite Klasse der in dieser Arbeit untersuchten Cobalt-Komplexe beinhaltete Dimere verzerrt oktaedrisch koordinierter Cobalt-Ionen, welche durch symmetrische bwz. asymmetrische chinon-basierte Liganden verbrĂŒckt sind. Der Schwerpunkt der Untersuchungen lag hierbei auf dem Einfluss des BrĂŒckenliganden auf die magnetische Kopplung zwischen den Cobalt-Zentren. Die magnetischen Eigenschaften der Komplexe wurden mit Hilfe statischer SuszeptibilitĂ€ts- und Magnetisierungsmessungen untersucht und anhand verschiedener Modelle analysiert. AbhĂ€ngig vom BrĂŒckenliganden wurden antiferromagnetische oder ferromagnetische Austauschwechselwirkungen beobachtet, wobei die unterschiedlichen Vorzeichen der Austauschkopplung durch unterschiedliche relative BeitrĂ€ge möglicher Austauschpfade, bedingt durch verschiedene Substituenten am BrĂŒckenliganden, bzw. leicht variierender Geometrien, erklĂ€rt werden können. Die Ergebnisse deuten darauf hin, dass elektronenziehende Substituenten die im Bereich des molekularen Magnetismus bevorzugten ferromagnetischen Austauschwechselwirkungen begĂŒnstigen. Im Hinblick auf die Gesamtheit der hier vorgestellten Arbeit lĂ€sst sich abschließend zusammenfassen, dass diese einen Beitrag zum besseren VerstĂ€ndnis der fĂŒr EinzelmolekĂŒlmagneten relevanten Eigenschaften liefert. Die Ermittlung der elektronischen Strukturen ausgewĂ€hlter Lanthanoid- und Cobalt-Komplexe anhand detaillierter magnetometrischer und spektroskopischer Untersuchungen fĂŒhrte nicht nur zum VerstĂ€ndnis von statischen und dynamischen magnetischen Eigenschaften, sondern ermöglichte auch die Entwicklung von Design-Kriterien sowie neuer AnsĂ€tze, die in naher Zukunft zu optimierten EinzelmolekĂŒlmagneten fĂŒhren könnten

    (Electro)catalytic C-C bond formation reaction with a redox-active cobalt complex

    Get PDF
    Cooperativity between cobalt and non-innocent ligands in electron transfer processes has been utilized for (electro)catalytic C–C bond formation reactions

    Probing bistability in FeII and CoII complexes with an unsymmetrically substituted quinonoid ligand

    Get PDF
    The generation of molecular platforms, the properties of which can be influenced by a variety of external perturbations, is an important goal in the field of functional molecular materials. We present here the synthesis of a new quinonoid ligand platform containing an [O,O,O,N] donor set. The ligand is derived from a chloranilic acid core by using the [NR] (nitrogen atom with a substituent R) for [O] isoelectronic substitution. Mononuclear FeII and CoII complexes have been synthesized with this new ligand. Results obtained from single crystal X-ray crystallography, NMR spectroscopy, (spectro)electrochemistry, SQUID magnetometry, multi-frequency EPR spectroscopy and FIR spectroscopy are used to elucidate the electronic and geometric structures of the complexes. Furthermore, we show here that the spin state of the FeII complex can be influenced by temperature, pressure and light and the CoII complex displays redox-induced spin-state switching. Bistability is observed in the solid-state as well as in solution for the FeII complex. The new ligand presented here, owing to the [NR] group present in it, will likely have more adaptability while investigating switching phenomena compared to its [O,O,O,O] analogues. Thus, such classes of ligands as well as the results obtained on the reversible changes in physical properties of the metal complexes are likely to contribute to the generation of multifunctional molecular materials

    Synthesis, structural characterization and magnetic behaviour of a family of [Co2 IIILn2 III] butterfly compounds

    No full text
    We have successfully prepared and structurally characterized a family of butterfly-like [Co2 IIILn2 III] complexes where all magnetic properties are due to the Ln(iii) ions. The complexes with Ln = Tb(1), Dy(2), Ho(3), Er(4) and Yb(5) are iso-structural. An exception is the complex with Ln = Gd(6) which strings in a one dimensional chain. The structural similarity together with the high tendency of the crystallites to align under an applied magnetic field allowed an overall DC magnetic data treatment to extract phenomenological crystal field parameters and hence to determine the ground state multiplet energy level splitting. The Dy(iii) member is the only one showing slow relaxation of magnetization under zero DC applied field, while all the others need a small DC applied field.Fil: Funes, Víctor Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgånica, Analítica y Química Física; ArgentinaFil: Carrella, Luca. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; AlemaniaFil: Rechkemmer, Yvonne. UniversitÀt Stuttgart; AlemaniaFil: Van Slageren, Joris. UniversitÀt Stuttgart; AlemaniaFil: Rentschler, Eva. University Mainz. Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg; AlemaniaFil: Alborés, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgånica, Analítica y Química Física; Argentin

    A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier

    Get PDF
    Single-molecule magnets display magnetic bistability of molecular origin, which may one day be exploited in magnetic data storage devices. Recently it was realised that increasing the magnetic moment of polynuclear molecules does not automatically lead to a substantial increase in magnetic bistability. Attention has thus increasingly focussed on ions with large magnetic anisotropies, especially lanthanides. In spite of large effective energy barriers towards relaxation of the magnetic moment, this has so far not led to a big increase in magnetic bistability. Here we present a comprehensive study of a mononuclear, tetrahedrally coordinated cobalt(II) single-molecule magnet, which has a very high effective energy barrier and displays pronounced magnetic bistability. The combined experimental-theoretical approach enables an in-depth understanding of the origin of these favourable properties, which are shown to arise from a strong ligand field in combination with axial distortion. Our findings allow formulation of clear design principles for improved materials.ISSN:2041-172

    Multiple Bistability in Quinonoid-Bridged Diiron(II) Complexes: Influence of Bridge Symmetry on Bistable Properties

    No full text
    Quinonoid bridges are well-suited for generating dinuclear assemblies that might display various bistable properties. In this contribution we present two diiron­(II) complexes where the iron­(II) centers are either bridged by the doubly deprotonated form of a symmetrically substituted quinonoid bridge, 2,5-bis­[4-(isopropyl)­anilino]-1,4-benzoquinone (<b>H</b><sub><b>2</b></sub><b>L2â€Č</b>) with a [O,N,O,N] donor set, or with the doubly deprotonated form of an unsymmetrically substituted quinonoid bridge, 2-[4-(isopropyl)­anilino]-5-hydroxy-1,4-benzoquinone (<b>H</b><sub><b>2</b></sub><b>L5â€Č</b>) with a [O,O,O,N] donor set. Both complexes display temperature-induced spin crossover (SCO). The nature of the SCO is strongly dependent on the bridging ligand, with only the complex with the [O,O,O,N] donor set displaying a prominent hysteresis loop of about 55 K. Importantly, only the latter complex also shows a pronounced light-induced spin state change. Furthermore, both complexes can be oxidized to the mixed-valent iron­(II)–iron­(III) form, and the nature of the bridge determines the Robin and Day classification of these forms. Both complexes have been probed by a battery of electrochemical, spectroscopic, and magnetic methods, and this combined approach is used to shed light on the electronic structures of the complexes and on bistability. The results presented here thus show the potential of using the relatively new class of unsymmetrically substituted bridging quinonoid ligands for generating intriguing bistable properties and for performing site-specific magnetic switching

    Multitechnique investigation of Dy3-implications for coupled lanthanide clusters

    Get PDF
    In-depth investigations of the low energy electronic structures of mononuclear lanthanide complexes, including single molecule magnets, are challenging at the best of times. For magnetically coupled polynuclear systems, the task seems well nigh impossible. However, without detailed understanding of the electronic structure, there is no hope of understanding their static and dynamic magnetic properties in detail. We have been interested in assessing which techniques are most appropriate for studying lanthanide single-molecule magnets. Here we present a wide ranging theoretical and experimental study of the archetypal polynuclear lanthanide single-molecule magnet Dy3 and derive the simplest model to describe the results from each experimental method, including high-frequency electron paramagnetic resonance and far-infrared spectroscopies and cantilever torque magnetometry. We conclude that a combination of these methods together with ab initio calculations is required to arrive at a full understanding of the properties of this complex, and potentially of other magnetically coupled lanthanide complexes.crosscheck: This document is CrossCheck deposited related_data: Supplementary Information identifier: Liviu Ungur (ORCID) identifier: Liviu Ungur (ResearcherID) copyright_licence: The Royal Society of Chemistry has an exclusive publication licence for this journal copyright_licence: This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) history: Received 22 January 2016; Accepted 16 March 2016; Accepted Manuscript published 16 March 2016; Advance Article published 29 March 2016; Version of Record published 21 June 2016status: publishe
    corecore