25 research outputs found
Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa H.B.K., Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae)
Bean (Phaseolus vulgaris), an important component in the diet of people in developing countries, has low levels of the essential amino acid, methionine. We have attempted to correct this deficiency by introducing a transgene coding for a methionine-rich storage albumin from the Brazil nut via biolistic methods. The transgene's coding sequence was driven by a doubled 35S CaMV promoter and AMV enhancer sequences. The transgene was stable and correctly expressed in homozygous R2 to R5 seeds. In two of the five transgenic lines the methionine content was significantly increased (14 and 23%) over the values found in untransformed plants.O feijão (Phaseolus vulgaris L.) é um componente importante na dieta da população de países em desenvolvimento. Entretanto, possui um baixo nível de aminoácidos essenciais, como a metionina. Numa tentativa de corrigir esta deficiência, plantas transgênicas de feijão foram produzidas contendo o gene de uma proteína rica em metionina, a albumina 2S da castanha do Brasil. O gene desta albumina (be2s2), clonado sob o controle do promotor 35S dobrado do vírus do mosaico da couve-flor e uma seqüência "enhancer" do vírus do mosaico da alfafa, foi introduzido em feijão através do processo biobalístico. O gene foi expressado corretamente em sementes homozigotas desde a segunda até a quinta geração. Em duas linhagens transgênicas o nível de metionina foi incrementado em 14 e 23% nas sementes
Improvement of plant regeneration through the electroporation of colt Cherry (Prunus avium x pseudocerasus) isolated protoplasts
Improvement of plant regeneration through the electroporation of colt Cherry ([i]Prunus avium[/i] x [i]pseudocerasus[/i]) isolated protoplasts. Electronique et pilotage des plante
Somatic hybridization of sexually incompatible top-fruit tree rootstokcs, wild pear (Pyrus communis var. pyraster L.) and Colt cherry (Prunus avium x pseudocerasus)
Somatic hybridization of sexually incompatible top-fruit tree rootstokcs, wild pear ([i]Pyrus communis[/i] var. [i]pyraster[/i] L.) and Colt cherry ([i]Prunus avium x pseudocerasus[/i]
A biolistic process for in vitro gene transfer into chicken embryos
Chicken embryos kept in culture medium were bombarded using a high helium gas pressure biolistic device. To optimize the factors that affect transformation efficiency, the lacZ gene under control of the human cytomegalovirus immediate early enhancer/promoter was used as a reporter gene. There was an inverse relationship between survival rate and transformation efficiency. The best conditions obtained for high embryo survival and high transformation efficiency were achieved with 800 psi helium gas pressure, 500 mmHg vacuum, gold particles, an 8 cm DNA-coated microparticle flying distance to the embryo and embryo placement 0.5 cm from the center of the particle dispersion cone. Under these conditions, transformation efficiency was 100%, survival rate 25% and the number of expression units in the embryo body cells ranged from 100 to 1,000. Expression of green fluorescent protein was also detected in embryos bombarded under optimal conditions. Based on the results obtained, the biolistic process can be considered an efficient method for the transformation of chicken embryos and therefore can be used as a model system to study transient gene expression and tissue-specific promoters
The role of T cell subsets and cytokines in the regulation of intracellular bacterial infection
Cellular immune responses are a critical part of the host's defense against intracellular bacterial infections. Immunity to Brucella abortus crucially depends on antigen-specific T cell-mediated activation of macrophages, which are the major effectors of cell-mediated killing of this organism. T lymphocytes that proliferate in response to B. abortus were characterized for phenotype and cytokine activity. Human, murine, and bovine T lymphocytes exhibited a type 1 cytokine profile, suggesting an analogous immune response in these different hosts. In vivo protection afforded by a particular cell type is dependent on the antigen presented and the mechanism of antigen presentation. Studies using MHC class I and class II knockout mice infected with B. abortus have demonstrated that protective immunity to brucellosis is especially dependent on CD8+ T cells. To target MHC class I presentation we transfected ex vivo a murine macrophage cell line with B. abortus genes and adoptively transferred them to BALB/c mice. These transgenic macrophage clones induced partial protection in mice against experimental brucellosis. Knowing the cells required for protection, vaccines can be designed to activate the protective T cell subset. Lastly, as a new strategy for priming a specific class I-restricted T cell response in vivo, we used genetic immunization by particle bombardment-mediated gene transfe