40 research outputs found

    Effects of atomic interactions on Quantum Accelerator Modes

    Get PDF
    We consider the influence of the inclusion of interatomic interactions on the delta-kicked accelerator model. Our analysis concerns in particular quantum accelerator modes, namely quantum ballistic transport near quantal resonances. The atomic interaction is modelled by a Gross-Pitaevskii cubic nonlinearity, and we address both attractive (focusing) and repulsive (defocusing) cases. The most remarkable effect is enhancement or damping of the accelerator modes, depending on the sign of the nonlinear parameter. We provide arguments showing that the effect persists beyond mean-field description, and lies within the experimentally accessible parameter range.Comment: 4 pages, 6 figure

    Arnol'd Tongues and Quantum Accelerator Modes

    Full text link
    The stable periodic orbits of an area-preserving map on the 2-torus, which is formally a variant of the Standard Map, have been shown to explain the quantum accelerator modes that were discovered in experiments with laser-cooled atoms. We show that their parametric dependence exhibits Arnol'd-like tongues and perform a perturbative analysis of such structures. We thus explain the arithmetical organisation of the accelerator modes and discuss experimental implications thereof.Comment: 20 pages, 6 encapsulated postscript figure

    Delocalized and Resonant Quantum Transport in Nonlinear Generalizations of the Kicked Rotor Model

    Get PDF
    We analyze the effects of a nonlinear cubic perturbation on the delta-Kicked Rotor. We consider two different models, in which the nonlinear term acts either in the position or in the momentum representation. We numerically investigate the modifications induced by the nonlinearity in the quantum transport in both localized and resonant regimes and a comparison between the results for the two models is presented. Analyzing the momentum distributions and the increase of the mean square momentum, we find that the quantum resonances asymptotically are very stable with respect to the nonlinear perturbation of the rotor's phase evolution. For an intermittent time regime, the nonlinearity even enhances the resonant quantum transport, leading to superballistic motion.Comment: 8 pages, 10 figures; to appear in Phys. Rev.

    Stable Quantum Resonances in Atom Optics

    Full text link
    A theory for stabilization of quantum resonances by a mechanism similar to one leading to classical resonances in nonlinear systems is presented. It explains recent surprising experimental results, obtained for cold Cesium atoms when driven in the presence of gravity, and leads to further predictions. The theory makes use of invariance properties of the system, that are similar to those of solids, allowing for separation into independent kicked rotor problems. The analysis relies on a fictitious classical limit where the small parameter is {\em not} Planck's constant, but rather the detuning from the frequency that is resonant in absence of gravity.Comment: 5 pages, 3 figure

    Mathematically-Based Algorithms for Film Digital Restoration

    Get PDF
    Since its invention, cinema has become an important media of popular culture, becoming part of our historical memory. Unfortunately, films are subject to a fast decay and aging, especially when the conservation conditions are not appropriate. The decay process is irreversible, and the digitalization is becoming the most diffuse and suitable way to conserve and restore films. Classic restoration software involves a significant human intervention and a work of supervision by qualified operators. Indeed, they require a frame-by-frame control and a further phase of manual cleaning. This workflow makes the restoration process expensive in terms of time and money, so that it can\u2019t be afford by small audiovisual archives. The idea of our work is to provide a software which reduce the human intervention and that could be easily used even by small archives, being open source. Here we present, DustRemover, a semi-automatic software for digital film restoration

    Nonlinearity effects in the kicked oscillator

    Full text link
    The quantum kicked oscillator is known to display a remarkable richness of dynamical behaviour, from ballistic spreading to dynamical localization. Here we investigate the effects of a Gross Pitaevskii nonlinearity on quantum motion, and provide evidence that the qualitative features depend strongly on the parameters of the system.Comment: 4 pages, 5 figure

    Effects of a nonlinear perturbation on dynamical tunneling in cold atoms

    Full text link
    We perform a numerical analysis of the effects of a nonlinear perturbation on the quantum dynamics of two models describing non-interacting cold atoms in a standing wave of light with a periodical modulated amplitude A(t)A(t). One model is the driven pendulum, considered in ref.\cite{raiz1}, and the other is a variant of the well-known Kicked Rotator Model. In absence of the nonlinear perturbation, the system is invariant under some discrete symmetries and quantum dynamical tunnelling between symmetric classical islands is found. The presence of nonlinearity destroys tunnelling, breaking the symmetries of the system. Finally, further consequences of nonlinearity in the kicked rotator case are considered.Comment: 10 pages, 15 figure

    Nonlinear Lattice Waves in Random Potentials

    Full text link
    Localization of waves by disorder is a fundamental physical problem encompassing a diverse spectrum of theoretical, experimental and numerical studies in the context of metal-insulator transition, quantum Hall effect, light propagation in photonic crystals, and dynamics of ultra-cold atoms in optical arrays. Large intensity light can induce nonlinear response, ultracold atomic gases can be tuned into an interacting regime, which leads again to nonlinear wave equations on a mean field level. The interplay between disorder and nonlinearity, their localizing and delocalizing effects is currently an intriguing and challenging issue in the field. We will discuss recent advances in the dynamics of nonlinear lattice waves in random potentials. In the absence of nonlinear terms in the wave equations, Anderson localization is leading to a halt of wave packet spreading. Nonlinearity couples localized eigenstates and, potentially, enables spreading and destruction of Anderson localization due to nonintegrability, chaos and decoherence. The spreading process is characterized by universal subdiffusive laws due to nonlinear diffusion. We review extensive computational studies for one- and two-dimensional systems with tunable nonlinearity power. We also briefly discuss extensions to other cases where the linear wave equation features localization: Aubry-Andre localization with quasiperiodic potentials, Wannier-Stark localization with dc fields, and dynamical localization in momentum space with kicked rotors.Comment: 45 pages, 19 figure
    corecore