60 research outputs found

    Non-linear resonance in nearly geodesic motion in low-mass X-ray binaries

    Full text link
    We have explored the ideas that parametric resonance affects nearly geodesic motion around a black hole or a neutron star, and that it may be relevant to the high frequency (twin) quasi-periodic oscillations occurring in some low-mass X-ray binaries. We have assumed the particles or fluid elements of an accretion disc to be subject to an isotropic perturbation of a hypothetical but rather general form. We find that the parametric resonance is indeed excited close to the radius where epicyclic frequencies of radial and meridional oscillations are in a 2:3 ratio. The location and frequencies of the highest amplitude excitation vary with the strength of the perturbation. These results agree with actual frequency ratios of twin kHz QPOs that have been reported in some black hole candidates, and they may be consistent also with correlation of the twin peaks in Sco X-1.Comment: 5 pages; accepted for publication in PAS

    Kinematic Density Waves in Accretion Disks

    Full text link
    When thin accretion disks around black holes are perturbed, the main restoring force is gravity. If gas pressure, magnetic stresses, and radiation pressure are neglected, the disk remains thin as long as orbits do not intersect. Intersections would result in pressure forces which limit the growth of perturbations. We find that a discrete set of perturbations is possible for which orbits remain non-intersecting for arbitrarily long times. These modes define a discrete set of frequencies. We classify all long-lived perturbations for arbitrary potentials and show how their mode frequencies are related to pattern speeds computed from the azimuthal and epicyclic frequencies. We show that modes are concentrated near radii where the pattern speed has vanishing radial derivative. We explore these modes around Kerr black holes as a possible explanation for the high-frequency quasi-periodic oscillations of black hole binaries such as GRO J1655-40. The long-lived modes are shown to coincide with diskoseismic waves in the limit of small sound speed. While the waves have long lifetime, they have the wrong frequencies to explain the pairs of high-frequency quasi-periodic oscillations observed in black hole binaries.Comment: 28 pages, 6 figures; extended comparison with diskoseismology; added reference to astro-ph/060368

    Effect of turbulent diffusion on iron abundance profiles

    Get PDF
    We compare the observed peaked iron abundance profiles for a small sample of groups and clusters with the predictions of a simple model involving the metal ejection from the brightest galaxy and the subsequent diffusion of metals by stochastic gas motions. Extending the analysis of Rebusco et al. (2005) we found that for 5 out of 8 objects in the sample an effective diffusion coefficient of the order of 102910^{29} cm2^{2} s−1^{-1} is needed. For AWM4, Centaurus and AWM7 the results are different suggesting substantial intermittence in the process of metal spreading across the cluster. There is no obvious dependence of the diffusion coefficient on the mass of the system. We also estimated the characteristic velocities and the spatial scales of the gas motions needed to balance the cooling losses by the dissipation of the same gas motions. A comparison of the derived spatial scales and the sizes of observed radio bubbles inflated in the ICM by a central active galactic nucleus (AGN) suggests that the AGN/ICM interaction makes an important (if not a dominant) contribution to the gas motions in the cluster cores.Comment: 12 pages, 4 figures, accepted for publication on MNRA

    Metal mixing by buoyant bubbles in galaxy clusters

    Get PDF
    Using a series of three-dimensional, hydrodynamic simulations on an adaptive grid, we have performed a systematic study on the effect of bubble-induced motions on metallicity profiles in clusters of galaxies. In particular, we have studied the dependence on the bubble size and position, the recurrence times of the bubbles, the way these bubbles are inflated and the underlying cluster profile. We find that in hydrostatic cluster models, the resulting metal distribution is very elongated along the direction of the bubbles. Anisotropies in the cluster or ambient motions are needed if the metal distribution is to be spherical. In order to parametrise the metal transport by bubbles, we compute effective diffusion coefficients. The diffusion coefficients inferred from our simple experiments lie at values of around ∌1029\sim 10^{29} cm2^2s−1^{-1} at a radius of 10 kpc. The runs modelled on the Perseus cluster yield diffusion coefficients that agree very well with those inferred from observations.Comment: 17 pages, 12 figures. Accepted by MNRA

    Stability of radiation-pressure dominated disks. I. The dispersion relation for a delayed heating alpha-viscosity prescription

    Get PDF
    We derive and investigate the dispersion relation for accretion disks with retarded or advanced heating. We follow the alpha-prescription but allow for a time offset (\tau) between heating and pressure perturbations, as well as for a diminished response of heating to pressure variations. We study in detail solutions of the dispersion relation for disks with radiation-pressure fraction 1 - \beta . For \tau <0 (delayed heating) the number and sign of real solutions for the growth rate depend on the values of the time lag and the ratio of heating response to pressure perturbations, \xi . If the delay is larger than a critical value (e.g., if \Omega \tau <-125 for \alpha =0.1, \beta =0 and \xi =1) two real solutions exist, which are both negative. These results imply that retarded heating may stabilize radiation-pressure dominated accretion disks.Comment: 11 pages, 10 figures, to be submitted to A&

    The Interpretations For the Low and High Frequency QPO Correlations of X-ray Sources Among White Dwarfs, Neutron Stars and Black Holes

    Full text link
    It is found that there exists an empirical linear relation between the high frequency \nhigh and low frequency \nlow of quasi-periodic oscillations (QPOs) for black hole candidate (BHC), neutron star (NS) and white dwarf (WD) in the binary systems, which spans five orders of magnitude in frequency. For the NS Z (Atoll) sources, Îœhigh\nu_{high} and Îœlow\nu_{low} are identified as the lower kHz QPO frequency and horizontal branch oscillations (HBOs) \nh (broad noise components); for the black hole candidates and low-luminosity neutron stars, they are the QPOs and broad noise components at frequencies between 1 and 10 Hz; for WDs, they are the ``dwarf nova oscillations'' (DNOs) and QPOs of cataclysmic variables (CVs). To interpret this relation, our model ascribes Îœhigh\nu_{high} to the Alfv\'en wave oscillation frequency at a preferred radius and Îœlow\nu_{low} to the same mechanism at another radius. Then, we can obtain \nlow = 0.08 \nhigh and the relation between the upper kHz QPO frequency \nt and HBO to be \nh \simeq 56 ({\rm Hz}) (\nt/{\rm kHz})^{2}, which are in accordance with the observed empirical relations. Furthermore, some implications of model are discussed, including why QPO frequencies of white dwarfs and neutron stars span five orders of magnitude in frequency. \\Comment: 11 pages, 1 figure, accepted by PAS

    QPOs: Einstein's gravity non-linear resonances

    Full text link
    There is strong evidence that the observed kHz Quasi Periodic Oscillations (QPOs) in the X-ray flux of neutron star and black hole sources in LMXRBs are linked to Einstein's General Relativity. Abramowicz&Klu\'zniak (2001) suggested a non-linear resonance model to explain the QPOs origin: here we summarize their idea and the development of a mathematical toy-model which begins to throw light on the nature of Einstein's gravity non-linear oscillations.Comment: Proceeding of the Einstein's Legacy, Munich 200

    The correlations and anticorrelations in QPO data

    Full text link
    Double peak kHz QPO frequencies in neutron star sources varies in time by a factor of hundreds Hz while in microquasar sources the frequencies are fixed and located at the line \nu_2 = 1.5 \nu_1 in the frequency-frequency plot. The crucial question in the theory of twin HFQPOs is whether or not those observed in neutron-star systems are essentially different from those observed in black holes. In black hole systems the twin HFQPOs are known to be in a 3:2 ratio for each source. At first sight, this seems not to be the case for neutron stars. For each individual neutron star, the upper and lower kHz QPO frequencies, \nu_2 and \nu_1, are linearly correlated, \nu_2=A \nu_1 + B, with the slope A < 1.5, i.e., the frequencies definitely are not in a 1.5 ratio. In this contribution we show that when considered jointly on a frequency-frequency plot, the data for the twin kHz QPO frequencies in several (as opposed to one) neutron stars uniquely pick out a certain preferred frequency ratio that is equal to 1.5 for the six sources examined so far.Comment: 3 pages, 1 figure, Astronomische Nachrichten, in pres
    • 

    corecore