27 research outputs found

    Air-entrapping capacity in the hair coverage of Malacosoma castrensis (Lasiocampidae: Lepidoptera) caterpillar: a case study.

    Get PDF
    The moth Malacosoma castrensis (Lasiocampidae) is commonly found along the Northern Germany coasts whose habitat is mainly represented by salt marshes subjected to sea level variations. Surprisingly, terrestrial caterpillars can withstand many hours being flooded by the seawater. The ability to withstand periods of submersion in a terrestrial insect raises the problem of respiration related to avoiding water percolation into the tracheal system. In the present study, we investigated under laboratory conditions the role of water-repellent cuticle structures in oxygen supply in caterpillars of M. castrensis submerged in water. For this purpose, air-layer stability tests using force measurements, and micromorphology of cuticle structures using SEM and fluorescence microscopy were performed. A plastron appeared when a caterpillar is under water. Plastron stability, its' gasses composition, and internal pressure were estimated. The plastron is stabilized by long and rare hairs, which are much thicker than the corresponding hairs of aquatic insects. Thick and stiff hairs with sclerotized basal and middle regions protrude into the water through plastron – water interface, while substantial regions of thin and flexible hairs are aligned along the plastron – water interface and their side walls can support pressure in plastron even below atmospheric pressure. Additional anchoring points between hair's stalk and microtrichia near to the hair base provide enhanced stiffness to the hair layer and prevent hair layer from collapse and water entering between hairs. Advancing contact angle on hairs is more than 90°, which is close to the effective contact angle for the whole caterpillar

    Role of Fruit Epicuticular Waxes in Preventing Bactrocera oleae (Diptera: Tephritidae) Attachment in Different Cultivars of Olea europaea

    Get PDF
    The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the major pest of cultivated olives (Olea europaea L.), and a serious threat in all of the Mediterranean Region. In the present investigation, we demonstrated with traction force experiments that B. oleae female adhesion is reduced by epicuticular waxes (EWs) fruit surface, and that the olive fruit fly shows a different ability to attach to the ripe olive surface of different cultivars of O. europaea (Arbequina, Carolea, Dolce Agogia, Frantoio, Kalamata, Leccino, Manzanilla, Picholine, Nostrale di Rigali, Pendolino and San Felice) in terms of friction force and adhesion, in relation with different mean values of olive surface wettability. Cryo-scanning morphological investigation revealed that the EW present on the olive surface of the different analyzed cultivars are represented by irregular platelets varying in the orientation, thus contributing to affect the surface microroughness and wettability in the different cultivars, and consequently the olive fruit fly attachment. Further investigations to elucidate the role of EW in olive varietal resistance to the olive fruit fly in relation to the olive developmental stage and environmental conditions could be relevant to develop control methods alternative to the use of harmful pesticides

    Attachment devices and the tarsal gland of the bug Coreus marginatus (Hemiptera: Coreidae)

    Get PDF
    AbstractThe present ultrastructural investigation using scanning and transmission electron microscopy as well as light and fluorescence microscopy describes in detail the attachment devices and tarsal gland of the bug Coreus marginatus (L.) (Hemiptera: Coreidae). In particular, the fine structure of pulvilli reveals a ventral surface rich with pore channels, consistent with fluid emission, and a folded dorsal surface, which could be useful to enhance the pulvillus contact area during attachment to the substrate. The detailed description of the tarsal gland cells, whose structure is coherent with an active secretory function, allows us to consider the tarsal gland as the plausible candidate for the adhesive fluid production. Scolopidia strictly adhering to the gland cells are also described. On the basis of the fine structure of the tarsal gland, we hypothesise a fluid emission mechanism based on changes of the hydraulic pressure inside the gland, due to the unguitractor tendon movements. This mechanism could provide the fluid release based on compression of the pad and capillary suction, as demonstrated in other insects. The data here reported can contribute to understanding of insect adhesive fluid production, emission and control of its transport

    Mechanical interaction of the egg parasitoid Anastatus bifasciatus (Hymenoptera: Eupelmidae) with artificial substrates and its host egg

    Get PDF
    Egg parasitoids play an important role in biological control of pest species attacking and killing their hosts at an early stage of their development. During the antagonistic coevolution with their hosts, egg parasitoids have developed a great ability to locate their host using chemical cues. A considerable amount of literature is available on this topic, while nothing is known about a possible adaptation of egg parasitoids to topography and mechanical properties of egg surface features and its shape when attaching to the host egg for oviposition. In the present investigation, the attachment ability of adults of both sexes of the egg parasitoid Anastatus bifasciatus (Hymenoptera: Eupelmidae) to artificial (polishing paper, flat glass, glass beads as dummies of the host egg) and natural surfaces (eggs of Halyomorpha halys and Nezara viridula, both Heteroptera: Pentatomidae), with different roughness and wettability, was measured using centrifugal force tester and traction force experiments. The parasitoid attachment devices and the egg surfaces were examined under cryo scanning electron microscope, wettability and roughness of natural and artificial substrates were characterised. We detected differences in the attachment devices and attachment ability of the two sexes. The collected data revealed a special ability of the female to attach to the eggs of the host species, thus suggesting an adaptation of the A. bifasciatus female to the surface features of the eggs during oviposition

    The Antennal Pathway of Dragonfly Nymphs, from Sensilla to the Brain

    No full text
    International audienceDragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of , in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in nymphs and adults to process diverging sensory information

    Sensory pathway in aquatic basal polyneoptera: Antennal sensilla and brain morphology in stoneflies

    No full text
    International audienceAquatic insects represent a great portion of Arthropod diversity and the major fauna in inland waters. The sensory biology and neuroanatomy of these insects are, however, poorly investigated. This research aims to describe the antennal sensilla of nymphs of the stonefly Dinocras cephalotes using scanning electron microscopy and comparing them with the adult sensilla. Besides, central antennal pathways in nymphs and adults are investigated by neuron mass-tracing with tetramethylrhodamine, and their brain structures are visualized with an anti-synapsin antibody. No dramatic changes occur in the antennal sensilla during nymphal development, while antennal sensilla profoundly change from nymphs to adults when switching from an aquatic to an aerial lifestyle. However, similar brain structures are used in nymphs and adults to process diverging sensory information, perceived through different sensilla in water and air. These data provide valuable insights into the evolution of aquatic heterometabolous insects, maintaining a functional sensory system throughout development, including a distinct adaptation of the peripheral olfactory systems during the transition from detection of water-soluble chemicals to volatile compounds in the air. From a conservation biology perspective, the present data contribute to a better knowledge of the biology of stoneflies, which are very important bioindicators in rivers

    Effect of Leaf Trichomes in Different Species of Cucurbitaceae on Attachment Ability of the Melon Ladybird Beetle Chnootriba elaterii

    No full text
    This study investigates the attachment ability of the oligophagous melon ladybird beetle Chnootriba elaterii to leaves of several Cucurbitaceae species. Using cryo-SEM, we described adult and larva tarsal attachment devices and leaf surface structures (glandular and non-glandular trichomes) in Citrullus lanatus, Cucumis melo, Cucumis sativus, Cucurbita moschata, Cucurbita pepo, Ecballium elaterium, Lagenaria siceraria and Luffa aegyptiaca. Using traction force experiments and centrifugal force tests, we measured the friction force exerted by females and larvae on plant leaves. We observed that Cucurbitaceae glandular trichomes do not affect insect attachment ability at both developmental stages, suggesting some adaptation of C. elaterii to its host plants, while non-glandular trichomes, when they are dense, short and flexible, heavily reduce the attachment ability of both insect stages. When trichomes are dense but stiff, only the larval force is reduced, probably because the larva has a single claw, in contrast to the adult having paired bifid dentate claws. The data on the mechanical interaction of C. elaterii at different developmental stages with different Cucurbitaceae species, combined with data on the chemical cues involved in the host plant selection, can help to unravel the complex factors driving the coevolution between an oligophagous insect and its host plant species

    Reduction in Insect Attachment Caused by Different Nanomaterials Used as Particle Films (Kaolin, Zeolite, Calcium Carbonate)

    Get PDF
    In the present investigation, we compared the reduction in attachment ability of the southern green stinkbug Nezara viridula (Hemiptera: Pentatomidae) to glass induced by three different nanoparticle (kaolin, zeolite, and calcium carbonate) films. Using traction force experiments, behavioral experiments, and scanning electron microscopy observations, we analyzed the insect attachment ability and linear speed on untreated and treated glass with the three particle films. The three nanomaterials strongly reduced insect attachment ability mainly owing to contamination of attachment pads. The ability to reduce insect attachment was different for the three tested particle films: kaolin and zeolite induced a significantly higher reduction in N. viridula safety factor than calcium carbonate. The coating of the surface was more uniform and compact in kaolin and zeolite compared to calcium carbonate particle film. Moreover, kaolin and zeolite particles can more readily adhere to N. viridula attachment devices, whereas calcium carbonate particles appeared less adherent to the cuticular surface compared to the two aluminosilicate (kaolin and zeolite) particles. Only the application of kaolin reduced insect linear speed during locomotion. Nanoparticle films have a great potential to reduce insect attachment ability and represent a good alternative to the use of insecticides for the control of pentatomid bugs and other pest insects
    corecore