73 research outputs found

    APOSTEL 2.0 Recommendations for Reporting Quantitative Optical Coherence Tomography Studies.

    Get PDF
    OBJECTIVE To update the consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results, thus revising the previously published Advised Protocol for OCT Study Terminology and Elements (APOSTEL) recommendations. METHODS To identify studies reporting quantitative OCT results, we performed a PubMed search for the terms "quantitative" and "optical coherence tomography" from 2015 to 2017. Corresponding authors of the identified publications were invited to provide feedback on the initial APOSTEL recommendations via online surveys following the principle of a modified Delphi method. The results were evaluated and discussed by a panel of experts and changes to the initial recommendations were proposed. A final survey was recirculated among the corresponding authors to obtain a majority vote on the proposed changes. RESULTS A total of 116 authors participated in the surveys, resulting in 15 suggestions, of which 12 were finally accepted and incorporated into an updated 9-point checklist. We harmonized the nomenclature of the outer retinal layers, added the exact area of measurement to the description of volume scans, and suggested reporting device-specific features. We advised to address potential bias in manual segmentation or manual correction of segmentation errors. References to specific reporting guidelines and room light conditions were removed. The participants' consensus with the recommendations increased from 80% for the previous APOSTEL version to greater than 90%. CONCLUSIONS The modified Delphi method resulted in an expert-led guideline (evidence Class III; Grading of Recommendations, Assessment, Development and Evaluations [GRADE] criteria) concerning study protocol, acquisition device, acquisition settings, scanning protocol, funduscopic imaging, postacquisition data selection, postacquisition analysis, nomenclature and abbreviations, and statistical approach. It will be essential to update these recommendations to new research and practices regularly

    APOSTEL 2.0 recommendations for reporting quantitative optical coherence tomography studies

    Get PDF
    OBJECTIVE: To update the consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results, thus revising the previously published Advised Protocol for OCT Study Terminology and Elements (APOSTEL) recommendations. METHODS: To identify studies reporting quantitative OCT results, we performed a PubMed search for the terms “quantitative” and “optical coherence tomography” from 2015 to 2017. Corresponding authors of the identified publications were invited to provide feedback on the initial APOSTEL recommendations via online surveys following the principle of a modified Delphi method. The results were evaluated and discussed by a panel of experts, and changes to the initial recommendations were proposed. A final survey was recirculated among the corresponding authors to obtain a majority vote on the proposed changes. RESULTS: One hundred sixteen authors participated in the surveys, resulting in 15 suggestions, of which 12 were finally accepted and incorporated into an updated 9-point-checklist. We harmonized the nomenclature of the outer retinal layers, added the exact area of measurement to the description of volume scans; we suggested reporting device-specific features. We advised to address potential bias in manual segmentation or manual correction of segmentation errors. References to specific reporting guidelines and room light conditions were removed. The participants’ consensus with the recommendations increased from 80% for the previous APOSTEL version to greater than 90%. CONCLUSIONS: The modified Delphi method resulted in an expert-led guideline (evidence class III, GRADE criteria) concerning study protocol, acquisition device, acquisition settings, scanning protocol, fundoscopic imaging, post-acquisition data selection, post-acquisition analysis, nomenclature and abbreviations, and statistical approach. It will still be essential to update these recommendations to new research and practices regularly

    The new Bruch’s membrane opening – minimum rim width classification improves optical coherence tomography specificity in tilted discs

    No full text
    Gema Rebolleda, Alfonso Casado, Noelia Oblanca, Francisco J Muñoz-Negrete Department of Ophthalmology, Hospital Universitario Ramón y Cajal, Madrid, Spain Background and objective: To investigate and compare the false-positive (FP) diagnostic classification of the Bruch’s membrane opening – minimum rim width (BMO-MRW) and retinal nerve fiber layer (RNFL) thickness in healthy eyes with tilted optic disc.Materials and methods: Fifty healthy eyes of 30 participants with tilted optic disc underwent BMO-MRW and RNFL scanning using Spectralis and macular Cirrus optical coherence tomography (OCT) scans.Results: The overall FP rate was significantly lower using BMO-MRW map compared with both RNFL map by Spectralis (8% vs 62%, respectively, P<0.001) and ganglion cell analysis (GCA) map by Cirrus (8% vs 50%, respectively, P<0.001). Specificity was significantly higher using BMO-MRW than RNFL in eyes with low (89.7% vs 41.4%, P<0.001) and moderate myopia (95.2% vs 33.3%, P<0.001). Conclusion: OCT-derived BMO-MRW analysis provides significantly greater specificity than RNFL in tilted disc irrespectively of the refractive error, and it is more specific than GCA analysis in tilted disc with moderate myopia. Keywords: tilted disc, optical coherence tomography, false-positive, Bruch membran

    Optical Coherence Tomography to Differentiate Papilledema from Pseudopapilledema.

    No full text
    Mild papilledema may be difficult to distinguish by clinical observation from pseudopapilledema. An accurate diagnosis is critical to avoid invasive workup and unwarranted treatment. In this review, we focus on the development and subsequent role of optical coherence tomography (OCT) in detecting and differentiating optic nerve head drusen (ONHD) from papilledema and other causes of acquired swelling of the optic disc. Newer OCT technologies which permit deeper penetration to improve detection of ONHD were also reviewed. Enhanced depth imaging (EDI) spectral-domain OCT and swept-source (SS) OCT are currently recognized as the most reliable and sensitive tools to diagnose ONHD. OCT devices currently available provide a means to quantify drusen dimensions, to evaluate the integrity of neighboring structures and to monitor axonal and neuronal damage, yielding additional information to better understand the relationship between the morphological features of drusen, and their effects on the structure and function of the optic nerve
    corecore