34 research outputs found

    Infinite densities for L\'evy walks

    Full text link
    Motion of particles in many systems exhibits a mixture between periods of random diffusive like events and ballistic like motion. In many cases, such systems exhibit strong anomalous diffusion, where low order moments <∣x(t)∣q>< |x(t)|^q > with qq below a critical value qcq_c exhibit diffusive scaling while for q>qcq>q_c a ballistic scaling emerges. The mixed dynamics constitutes a theoretical challenge since it does not fall into a unique category of motion, e.g., the known diffusion equations and central limit theorems fail to describe both aspects. In this paper we resolve this problem by resorting to the concept of infinite density. Using the widely applicable L\'evy walk model, we find a general expression for the corresponding non-normalized density which is fully determined by the particles velocity distribution, the anomalous diffusion exponent α\alpha and the diffusion coefficient KαK_\alpha. We explain how infinite densities play a central role in the description of dynamics of a large class of physical processes and discuss how they can be evaluated from experimental or numerical data.Comment: Phys. Rev. E, in pres

    Non-normalizable densities in strong anomalous diffusion: beyond the central limit theorem

    Full text link
    Strong anomalous diffusion, where ⟨∣x(t)∣q⟩∼tqν(q)\langle |x(t)|^q \rangle \sim t^{q \nu(q)} with a nonlinear spectrum \nu(q) \neq \mbox{const}, is wide spread and has been found in various nonlinear dynamical systems and experiments on active transport in living cells. Using a stochastic approach we show how this phenomena is related to infinite covariant densities, i.e., the asymptotic states of these systems are described by non-normalizable distribution functions. Our work shows that the concept of infinite covariant densities plays an important role in the statistical description of open systems exhibiting multi-fractal anomalous diffusion, as it is complementary to the central limit theorem.Comment: PRL, in pres

    Distribution of Time-Averaged Observables for Weak Ergodicity Breaking

    Full text link
    We find a general formula for the distribution of time-averaged observables for systems modeled according to the sub-diffusive continuous time random walk. For Gaussian random walks coupled to a thermal bath we recover ergodicity and Boltzmann's statistics, while for the anomalous subdiffusive case a weakly non-ergodic statistical mechanical framework is constructed, which is based on L\'evy's generalized central limit theorem. As an example we calculate the distribution of Xˉ\bar{X}: the time average of the position of the particle, for unbiased and uniformly biased particles, and show that Xˉ\bar{X} exhibits large fluctuations compared with the ensemble average .Comment: 5 pages, 2 figure

    1/f^beta noise in a model for weak ergodicity breaking

    Full text link
    In systems with weak ergodicity breaking, the equivalence of time averages and ensemble averages is known to be broken. We study here the computation of the power spectrum from realizations of a specific process exhibiting 1/f^beta noise, the Rebenshtok-Barkai model. We show that even the binned power spectrum does not converge in the limit of infinite time, but that instead the resulting value is a random variable stemming from a distribution with finite variance. However, due to the strong correlations in neighboring frequency bins of the spectrum, the exponent beta can be safely estimated by time averages of this type. Analytical calculations are illustrated by numerical simulations.Comment: 10 pages, 7 figures; extended references and summary, smaller corrections; final versio

    A closer look at the indications of q-generalized Central Limit Theorem behavior in quasi-stationary states of the HMF model

    Full text link
    We give a closer look at the Central Limit Theorem (CLT) behavior in quasi-stationary states of the Hamiltonian Mean Field model, a paradigmatic one for long-range-interacting classical many-body systems. We present new calculations which show that, following their time evolution, we can observe and classify three kinds of long-standing quasi-stationary states (QSS) with different correlations. The frequency of occurrence of each class depends on the size of the system. The different microsocopic nature of the QSS leads to different dynamical correlations and therefore to different results for the observed CLT behavior.Comment: 11 pages, 8 figures. Text and figures added, Physica A in pres

    On distributions of functionals of anomalous diffusion paths

    Full text link
    Functionals of Brownian motion have diverse applications in physics, mathematics, and other fields. The probability density function (PDF) of Brownian functionals satisfies the Feynman-Kac formula, which is a Schrodinger equation in imaginary time. In recent years there is a growing interest in particular functionals of non-Brownian motion, or anomalous diffusion, but no equation existed for their PDF. Here, we derive a fractional generalization of the Feynman-Kac equation for functionals of anomalous paths based on sub-diffusive continuous-time random walk. We also derive a backward equation and a generalization to Levy flights. Solutions are presented for a wide number of applications including the occupation time in half space and in an interval, the first passage time, the maximal displacement, and the hitting probability. We briefly discuss other fractional Schrodinger equations that recently appeared in the literature.Comment: 25 pages, 4 figure

    Weakly non-ergodic Statistical Physics

    Full text link
    We find a general formula for the distribution of time averaged observables for weakly non-ergodic systems. Such type of ergodicity breaking is known to describe certain systems which exhibit anomalous fluctuations, e.g. blinking quantum dots and the sub-diffusive continuous time random walk model. When the fluctuations become normal we recover usual ergodic statistical mechanics. Examples of a particle undergoing fractional dynamics in a binding force field are worked out in detail. We briefly discuss possible physical applications in single particle experiments

    Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking

    Full text link
    Anomalous diffusion has been widely observed by single particle tracking microscopy in complex systems such as biological cells. The resulting time series are usually evaluated in terms of time averages. Often anomalous diffusion is connected with non-ergodic behaviour. In such cases the time averages remain random variables and hence irreproducible. Here we present a detailed analysis of the time averaged mean squared displacement for systems governed by anomalous diffusion, considering both unconfined and restricted (corralled) motion. We discuss the behaviour of the time averaged mean squared displacement for two prominent stochastic processes, namely, continuous time random walks and fractional Brownian motion. We also study the distribution of the time averaged mean squared displacement around its ensemble mean, and show that this distribution preserves typical process characteristic even for short time series. Recently, velocity correlation functions were suggested to distinguish between these processes. We here present analytucal expressions for the velocity correlation functions. Knowledge of the results presented here are expected to be relevant for the correct interpretation of single particle trajectory data in complex systems.Comment: 15 pages, 15 figures; References adde
    corecore