495 research outputs found

    Enhancer evolution and the origins of morphological novelty

    Get PDF

    Progress in integrated-circuit horn antennas for receiver applications. Part 1: Antenna design

    Get PDF
    The purpose of this work is to present a systematic method for the design of multimode quasi-integrated horn antennas. The design methodology is based on the Gaussian beam approach and the structures are optimized for achieving maximum fundamental Gaussian coupling efficiency. For this purpose, a hybrid technique is employed in which the integrated part of the antennas is treated using full-wave analysis, whereas the machined part is treated using an approximate method. This results in a simple and efficient design process. The developed design procedure has been applied for the design of a 20, a 23, and a 25 dB quasi-integrated horn antennas, all with a Gaussian coupling efficiency exceeding 97 percent. The designed antennas have been tested and characterized using both full-wave analysis and 90 GHz/370 GHz measurements

    Progress in integrated-circuit horn antennas for receiver applications. Part 2: A 90 GHz quasi-integrated horn antenna receiver

    Get PDF
    A receiver belonging to the family of integrated planar receivers has been developed at 90 GHz. It consists of a planar Schottky-diode placed at the feed of a dipole-probe suspended inside an integrated horn antenna. The measured planar mixer single-sideband conversion loss at 91.2 GHz (LO) with a 200 MHz IF frequency is 8.3dB plus or minus 0.3dB. The low cost of fabrication and simplicity of this design makes it ideal for millimeter and submillimeter-wave receivers

    Double-slot antennas on extended hemispherical dielectric lenses

    Get PDF
    An investigation of the coupling efficiencies to a gaussian-beam of a double-slot antenna on a hyperhemispherical lens is presented. It is shown that both lenses couple equally well to an appropriate gaussian beam (about 80 percent). The radiation patterns of both lenses with a double-slot antenna are computed using the ray-tracing method. The experimental radiation patterns are presented and show close agreement to the theoretically computed patterns

    An easy to control all-metal in-line-series ohmic RF MEMS switch

    Get PDF
    Copyright @ 2010 Springer-VerlagThe analysis, design and simulation of a novel easy to control all-metal in-line-series ohmic RF MEMS switch is presented, for applications where the operating frequency ranges from DC to 4 GHz. The proposed switch, due to its unique shape and size, assures high isolation and great linearity fulfilling the necessary requirements as concerns loss, power handling and power consumption. Simplicity has been set as the key success factor implying robustness and high fabrication yield. On the other hand, the specially designed cantilever-shape (hammerhead) allows distributed actuation force ensuring high controllability as well as reliability making the presented RF MEMS switch one of its kind

    Developments in two dimensional arrays

    Get PDF
    A two dimensional array of individual millimeter wave antennas with detectors will be described. The array is placed on a substrate lens [1] in the focal plane of a primary lens to form an imaging system (Fig. 1.). Calculations which predict ideal efficiencies of over 90% will be presented. Fabrication of the array and preliminary measurements will also be discussed

    Monolithic millimeter-wave two-dimensional horn imaging arrays

    Get PDF
    A monolithic two-dimensional horn imaging array has been fabricated for millimeter wavelengths. In this configuration, a dipole is suspended in an etched pyramidal cavity on a 1-μm silicon-oxynitride membrane. This approach leaves room for low-frequency connections and processing electronics. The theoretical pattern is calculated by approximating the horn structure by a cascade of rectangular-waveguide sections. The boundary conditions are matched at each of the waveguide sections and at the aperture of the horn. Patterns at 93 and 242 GHz agree well with theory. Horn aperture efficiencies of 44±4%, including mismatch and resistive losses, have been measured. A detailed breakdown of the losses is presented. The coupling efficiency to various f-number imaging systems is investigated, and a coupling efficiency of 24% for an f0.7 imaging system (including spillover, taper, mismatch and resistive losses) has been measured. Possible application areas include imaging arrays for remote sensing, plasma diagnostics, radiometry and superconducting tunnel-junction receivers for radio astronomy

    RF-MEMS switch actuation pulse optimization using Taguchi's method

    Get PDF
    Copyright @ 2011 Springer-VerlagReliability and longevity comprise two of the most important concerns when designing micro-electro-mechanical-systems (MEMS) switches. Forcing the switch to perform close to its operating limits underlies a trade-off between response bandwidth and fatigue life due to the impact force of the cantilever touching its corresponding contact point. This paper presents for first time an actuation pulse optimization technique based on Taguchi’s optimization method to optimize the shape of the actuation pulse of an ohmic RF-MEMS switch in order to achieve better control and switching conditions. Simulation results show significant reduction in impact velocity (which results in less than 5 times impact force than nominal step pulse conditions) and settling time maintaining good switching speed for the pull down phase and almost elimination of the high bouncing phenomena during the release phase of the switch

    Self and mutual admittance of slot antennas on a dielectric half-space

    Full text link
    In this paper, an efficient implementation of the spectral domain moment technique is presented for computing the self and mutual coupling between slot antennas on a dielectric half-space. It is demonstrated that by the proper selection of the weighting functions in the method of moments, the analytic evaluation or simplification of the transverse moment integrals is enabled. This results into a significant reduction of the required computational labor. The method is then utilized in order to provide design data for the self and mutual admittances between two slot antennas on a dielectric substrate lens in the case of fused quartz (∈ r =3.80), crystal quartz (∈ r =4.53), silicon (∈ r =11.9) and GaAs (∈ r =12.8). The presented technique and associated results are useful when designing twin slot quasi-optical receivers, imaging arrays, phased arrays or power-combining arrays of slot elements at millimeter-wave frequencies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44551/1/10762_2005_Article_BF02096364.pd
    corecore