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ABSTRACT

The purpose of this work is to present a systematic method for the design of multimode quasi-

integrated horn antennas. The design methodology is based on the Gaussian beam approach and

the structures are optimized for achieving maximum fundamental Gaussian coupling efficiency.

For this purpose, a hybrid technique is employed in which the integrated part of the antennas

is treated using full-wave analysis, whereas the machined part is treated using an approximate

method. This results in a simple and efficient design process. The developed design procedure

has been applied for the design of a 20dB, a 23dB and a 25dB quasi-integrated horn antennas,

all with a Gaussian coupling efficieny exceeding 97%. The designed antennas have been tested

and characterized using both full-wave analysis and 90GHz/370GHz measurements.
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I. QUASI-INTEGRATED HORN ANTENNA DESIGN : INTRODUCTION

The integrated-circuit horn antenna was introduced in [1] and analyzed using a full-wave analysis

technique in [2]. It consists of a dipole (or monopole) feed evaporated on a thin dielectric

membrane which is suspended in a pyramidal cavity etched in silicon or GaAs. Recently, this

antenna has been used in several millimeter and submillimeter-wave applications including a

double-polarized antenna design at 93GHz [4], a 256 element imaging array at 802GHz [5], and

a monopulse tracking system at 94GHz [6]. However, the wide flare-angle of the integrated-

circuit horn antenna, which is dictated by the anisotropic etching involved in its fabrication

(70° in silicon), limits its useful aperture size to 1.6A and its gain to 13dB. To this end the

quasi-integrated horn antenna was introduced [3], which consists of a machined small flare-

angle pyramidal section attached to the integrated portion (fig.l). The resulting structure is a

simple multimode pyramidal horn with circularly symmetric patterns, high gain, and low cross-

polarization, which is particularly attractive for submillimeter quasi-optical receiver applications.

The minimum machined dimension involved in its fabrication is around 1.5A which enables its

fabrication to frequencies up to 2THz. The purpose of this paper is to describe a systematic

approach towards the design of these horn antennas, and to provide a full range of practical

quasi-integrated horn antenna designs along with their detailed radiation characteristics. Since a

very desirable property of antennas intended for use in quasi-optical systems is the high Gaussian

content of their radiated fields [7], the developed design methodology is based on the optimization

of the quasi-integrated horns for achieving maximum fundamental Gaussian coupling efficiency.

The Gaussian coupling efficiency is particularly important in quasi-optical receiver applications

because it directly influences the total system performance with a pronounced effect on the

receiver noise temperature [8].

II. MULTIMODE APERTURE ANALYSIS FOR MAXIMUM FUNDAMENTAL

COUPLING EFFICIENCY
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Integrated on Si section Machined gain and phasing section

Fig.l The general configuration of the quasi-integrated multimode horn antenna.
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Fig.2 The maximum Gaussian coupling efficiency as a function of the
WO/Q ratio for various aperture modes available for beamshaping (up
to TEM,N/TMM,N ,m= 1,3. . .M, n = 0 , 2 . . . N ) .
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Consider a square aperture of side a in a ground-plane which is radiating in the half-space

z > 0. The transverse electric field of the aperture at z = 0 can be expanded in terms of the

eigenfunctions of a square waveguide of the same side a :

M,N

m,n

In (1) it is assumed that only modes with indices (m = 1, 3,5 ... M and n = 0,2,4,6 ... N) are

present as is the case of a pyramidal horn which is either fed by a centered Hertzian dipole or by

a waveguide which supports only the dominant TEio mode [2]. We now proceed to determine the

modal coefficients Amn,Bmn so that the coupling between the7 aperture field and a fundamental

beam is maximized. If the copolarized and cross-polarized components of the aperture field are

defined to be the Ex,ap and the Eyiap components respectively, then the transverse electric field

can be rewritten in the form :

M,N M,N

c y} = V^ dco $fco (x M\ E (x y} = V dxp fyxp (x y} (1\
' y / ^^^ T T l f l T T l T l V ' " / ' •a-yX,Op \ 1 y } -^V-r/ JT1TI T71TI V ' " 7 V 7

171,Tl T7ltTl

where the orthonormalized copolarized and cross-polarized hybrid modes W^m ^^n
 are:

, |*| < a/2, | y | < « / 2 (3)

, |*| < a/2, |y |< a/2 (4)
a a a

In (3) and (4) the origin of the Cartesian coordinates is located at the geometrical center of

the aperture and tn = 2 — Sn0 is the Neumann number. The corresponding copolarized and

cross-polarized modal coefficients of (3-4) are related to the modal coefficients of (1) through:

,co _ /mn . i m n p _ mn mn

rnn / 0 . 0 > ̂ mn / 5 I 7 ' *• 'vm2 + n2 v"i + n*

Now the coupling efficiency TJ(WO) of the aperture to a fundamental Gaussian beam of waist

radius w0, which has its waist on the aperture is given by [11] :

M,N

£ d"nlmn(w0)
m,n

J2_M,N

2 m,n
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where, 7mn(u;0) = // *c
m°n(x,y)exp(-(x2 + y2)/™2) dx dy. (1)

J Japert.

We wish at this point to determine the modal coefficients <f"n and d%n so that the coupling

efficiency T)(WO) is maximized. For this purpose, the application of Schwarz's inequality to (6)

immediately implies that the maximum coupling efficiency rjmax(w0) occurs in the absence of

cross-polarization and is obtained from :

7mnK)|2 (8)
m,n

with the corresponding co-polarization modal coefficients determined by :

= constant. (9)

The condition for vanishing cross-polarization is (see 5) : nAmn = — (10)

Therefore, for maximum fundamental Gaussian coupling efficiency the aperture modes should

add in phase and their relative magnitudes should satisfy conditions (9) and (10). The maximum

coupling efficiency r]max(w0) of equation (9) still depends on the waist radius w0 and it is shown in

figure 2 as a function of the ratio w0/a for various indices (M,N). In table 1 we show the relative

magnitudes between the modes at the optimum w0fOJ)i/a ratio, for some practically encountered

aperture sets of modes.

Available modes (M,N)
w0,oPt/a

cpl. efficiency : r]max

^12/^10

rfso/rfio
^32/^10

(1,0)
0.43
84%

-
-
-

(1,2)
0.34

98.5%
0.51

-
-

(1,2)+TE30

0.32
99.2%
0.56
0.11

-

(3,2)
0.29

99.7%
0.64
0.17
-0.11

Table 1: Optimum parameters for maximum fundamental Gaussian coupling efficiency for certain
practically encountered aperture modes available for beamshaping.
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III. APPROXIMATE ANALYSIS OF THE MACHINED SECTION AND

DESCRIPTION OF THE DESIGN PROCESS

Consider the gradually-flared pyramidal machined section of axial length LM and of half flare-

angle 90 (see fig. 1) which is assumed excited at its throat by M x N locally propagating modes.

Since the machined section is gradually flared and the incident modes propagating, reflections at

the throat are considered negligible and the corresponding transverse electric field is given by :

M,N

£.«*r(z,y) = £ {Ale^(x,y) + C^e«?M(x,y)} . (11)
m,n

To a first order approximation we can assume that each mode preserves its carried power upon

propagating from the throat to the aperture. Also, each mode acquires a phase shift computed

b y :

*mn= fL" /3mn(z)dz (12)
JO

where f3mn(z) is the local propagation constant of the mn'^-mode. The above phase shift has

been used extensively for the design of multimode horns [9-10] and it can be rigorously justified

through a coupled-mode analysis of gradually flared tapers [13]. The aperture field is assumed to

be modulated by a quadratic phase factor QLT(X, y) of curvature LT = o/(2 tan 00) with LT being

the total virtual length of the taper. Under the above assumptions and neglecting reflections ,

the aperture field is simply given by :

M,N

with the quadratically modulated aperture modal coefficients related to the throat modal coef-

ficients through :

j^mn) (14)

where Y^n is the throat admittance for the mn tk mode and Y0 is the free-space intrinsic admit-

tance which has been assigned to the aperture modes. Based on the above simplified analysis for
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the machined section and on a full-wave analysis of the integrated portion a three-stage design

process has been established and is summarized below :

1. The integrated 70° flare-angle section of the antenna structure of figure 1 (including the

step discontinuity) is selected and analyzed independently of the machined section. For

this purpose, the dipole-fed integrated portion is assumed to be terminated by an infinite

square waveguide of side (aa + 2s) and is analyzed using the full-wave analysis technique

of [2] to obtain the throat modal coefficients /!„„, C^n. The junction cross-section as and

the step size s (see fig. 1) are selected so that the magnitudes of the radiating aperture

modal coefficients, as predicted by equations 5 and 14, satisfy the optimal conditions (9)

and (10) as closely as possible.

2. The infinite waveguide is now replaced by the gradually flared machined section and the

assumption is made that the modal coefficients at the throat of the machined section retain

their computed values of stage 1. This is a good approximation since the actual excited

modal coefficients are determined by the difference between the integrated portion flare-

angle and the machined section flare-angle and this difference is always dominated by the

large 70° flare-angle of the integrated portion [10]. The length LM and the flare-angle 90 of

the machined section are then selected iteratively (using 12) so that the modal coefficients

^mn aPPear in phase on the radiating aperture. The shortest possible length is chosen in

order to achieve the maximum bandwidth.

3. Finally, the length and the flare-angle of the machined section are "fine-tuned" using the

full-wave analysis of [2] for the entire quasi-integrated horn antenna and again for achieving

maximum Gaussian coupling efficiency.

In table 2 we quantify several practical geometries of integrated portions which have resulted

from the first stage of the design process.
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IV. NUMERICAL AND EXPERIMENTAL RESULTS FOR SPECIFIC

QUASI-INTEGRATED HORN ANTENNA DESIGNS.

The algorithm of section III has been employed for the design of a 20dB, a 23dB and a 25dB

quasi-integrated horn antenna, all with a fundamental Gaussian coupling efficiency exceeding

97% and with a full-null beam efficiency around 99%. Although, in the design process the

analysis of the machined section is performed using the approximate method of section III, the

computation of the radiation characteristics of the finally designed horns is carried out using the

full-wave analysis technique of [2]. Furthermore, using this full-wave analysis along with 6GHz

scale-model measurements it was verified that the input impedance of the feeding strip-dipole in

the integrated portion of the horn is not affected by the attachment of the machined section [3].

This is due to the fact that the input impedance of the feeding strip is mainly determined by

its local geometrical environment which remains unaffected by the attachment of the machined

section. The input impedance for the integrated-circuit horn antennas has already been analyzed

theoretically and characterized experimentally in [2] where it was shown that by adjusting the

dipole position inside the horn, the input impedance can be matched to either Schottky or SIS

diodes. Therefore, the results of [2] are directly applicable to the case of the quasi-integrated

horn antennas as well.

A. 20dB quasi-integrated horn antenna.

The geometrical parameters for the 20dB realization are calculated to be (a, = 1.35A,s =

0.0, LM = 7A, G0 = 9°,<fp = 0.39A) and the numerically computed patterns from the third stage

of the design process along with the corresponding 90GHz measurements have been reported

in [3]. In fig. 3 the principal patterns are compared to the patterns obtained by analyzing

the machined section using the approximate method of section III. As shown, the approximate

model agrees well with both the full-wave analysis and the measurements thus verifying the

approximations used in the design process. The main radiation characteristics of this horn at
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the design frequency and at the edges of the ±5% bandwidth are summarized in table 3. The

indicated 10-dB beamwidth fluctuation corresponds to the variation of the beamwidth in an

azimuthal far-field cut. The Gaussian-beam rolloff was calculated at the edges of the ±5%

bandwidth using the Gaussian-beam parameters which were calculated at the design frequency

/„. The calculated phase center was found to be located at a distance of 1.5A from the horn

aperture for the E-plane and at 1.4A for the H-plane.

B. 23dB quasi-integrated horn antenna.

The optimized design parameters for a 23dB quasi-integrated horn are found to be (a, =

1.52A,s = 0.l7\.L\t = 13A,00 = 8.5°, dp = 0.39A) and the computed principal patterns from

both the full-wave analysis of the entire antenna and from the approximate model of section III

are compared in figure 4 to corresponding 370GHz measurements. In figure 5 we include also

the computed from the full-wave analysis and the measured patterns for the 45°-plane. The

radiation characteristics of this horn are being summarized in table 4. For the 23dB horn the

phase center was calculated to be at 3.7A inside the horn for the E-plane and at 3.5A for the

H-plane.

C. 25dB Quasi-integrated horn antenna.

In order to evaluate the efficiency of the design process and to provide a full range of practical

designs, a 25dB quasi-integrated horn has also been designed and the computed geometrical

parameters are found to be: (a, = 1.52A,s = Q.Q\,LM = 19.5A,00 = 10°, dp = 0.39A). The

radiation patterns, as calculated from the full-wave analysis and shown in figure 6 still exhibit

excellent circular symmetry, low cross-polarization and suppressed sidelobes. The location of the

phase center for this horn was computed to be at a distance of 13A from the aperture for the

E-plane and at 11A for the H-plane. The rest of the main radiation characteristics of this horn

antenna are being tabulated in table 5.
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1 jco,ap /i Japi
l"12 /l"10l

<*30|/I<*10I

ar^C^Mi?)
l/^ap / AaP
IU12 / -^12

Optimum

0.56*
0.114
180°

2

as = 1.35A
5 = 0.0

0.52
-

200°
4.5

as = 1.52A
5 = 0.0

0.50
0.11
183°
4.4

as = 1.35A
s = 0.17A

0.55
0.117
182°
5.1

as = 1.57A
5 = 0.0

0.51
0.146
179°
4.3

Table 2: Comparison between the optimum aperture modal coefficients and the modal coefficients
launched at the aperture by four practical integrated portion sections. The exciting dipole is
positioned at a distance of 0.39A from the apex of the horn. * The optimum ratio |^n'
is 0.51 for the a, = 1.35A geometry which only triggers the TEio,TEi2/TMi2 modes.

Gain
Aperture efficiency
lOdB Beamwidth

Sidelobe-level (E-plane)
Cross-pol.(45°)

Beam-efficiency (to -lOdB)
Gaussian Coupling

Gaussian Coupling rolloff

0.95/0

19.4dB
60.6%

37° ± 1°
-23dB

-22.5dB
85%

96.4%
95.5%

fo

20dB
62.8%

34° ±1.2°
-27dB

-22.7dB
86%

97.3%
97.3%

1.05/0
20.6dB
65.4%

32° ±1.8°
-26.3dB
-23dB
86.5%
96.9%
96.5%

Table 3: The main radiation characteristics of the 20dB quasi-integrated horn antenna (see text).

Gain
Aperture efficiency
lOdB Beamwidth

Sidelobe-level (E-plane)
Cross-pol.(45°)

Beam-efficiency (to -lOdB)
Gaussian Coupling

Gaussian Coupling rolloff

0.965/0
22.2dB
48.5%

27.6 ±0.2°
-28dB

-20.5dB
86.6%
97.2%
96.3%

fo

22.8dB
52%

25° ±1.1°
-33dB
-21dB

86%
97.3%
97.3%

1.035/0
23.6dB
58.4%

22.5° ±1.3°
-29.8dB
-22dB
86.6%
96.8%
96.0%

Table 4: The main radiation characteristics of the 23dB quasi-integrated horn antenna (see text).
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Fig.3 The E (right) and H-plane (left) patterns of the 20-dB quasi-
integrated horn. The 90GHz measured patterns are compared to the
full-wave analysis and the approximate analysis patterns. Detailed pat-
terns including cross-polarization are shown in [3].
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Gain
Aperture efficiency
lOdB Beamwidth

Sidelobe-level (E-plane)
Cross-pol.(45°)

Beam-efficiency (to -lOdB)
Gaussian Coupling

Gaussian Coupling rolloff

0.965/0

24.7dB
36%

21.6 ±0.8°
-28.7dB
-22.6dB

84.5%
97.1%
96.5%

fo

25.5dB
40%

19.2° ±0.7°
-30.8dB
-24dB

85%
97.5%
97.5%

1.035/0
26.2clB

44%
17.5° ±0.5°

-ao.sciB
-24.7clB

85%
97.4%
97.1%

Table 5: The main radiation characteristics of the 25dB quasi-integrated horn antenna (see text/

CQ
•O
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-35

Elevation angle (degrees)

Figure 6: The calculated from the full-wave analysis patterns of the 25-dB quasi-integrated horn.
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