22 research outputs found

    Three-Dimensional Simulations of Magnetized Thin Accretion Disks around Black Holes: Stress in the Plunging Region

    Full text link
    We describe three-dimensional general relativistic magnetohydrodynamic simulations of a geometrically thin accretion disk around a non-spinning black hole. The disk has a thickness h/r0.050.1h/r\sim0.05-0.1 over the radial range (220)GM/c2(2-20)GM/c^2. In steady state, the specific angular momentum profile of the inflowing magnetized gas deviates by less than 2% from that of the standard thin disk model of Novikov & Thorne (1973). Also, the magnetic torque at the radius of the innermost stable circular orbit (ISCO) is only 2\sim2% of the inward flux of angular momentum at this radius. Both results indicate that magnetic coupling across the ISCO is relatively unimportant for geometrically thin disks.Comment: 4 pages, 4 figures, ApJL accepte

    Estimating the Spins of Stellar-Mass Black Holes by Fitting Their Continuum Spectra

    Get PDF
    We have used the Novikov-Thorne thin disk model to fit the continuum X-ray spectra of three transient black hole X-ray binaries in the thermal state. From the fits we estimate the dimensionless spin parameters of the black holes to be: 4U 1543-47, a* = a/M = 0.7-0.85; GRO J1655-40, a* = 0.65-0.8; GRS 1915+105, a* = 0.98-1. We plan to expand the sample of spin estimates to about a dozen over the next several years. Some unresolved theoretical issues are briefly discussed.Comment: 8 pages, 4 figures, 1 table; to appear in "Astrophysics of Compact Objects" eds. Y. F. Yuan, X. D. Li, D. Lai, AI

    Viscous Torque and Dissipation in the Inner Region of a Thin Accretion Disk: Implications for Measuring Black Hole Spin

    Full text link
    We consider a simple Newtonian model of a steady accretion disk around a black hole. The model is based on height-integrated hydrodynamic equations, alpha-viscosity, and a pseudo-Newtonian potential that results in an innermost stable circular orbit (ISCO) that closely approximates the one predicted by GR. We find that the hydrodynamic models exhibit increasing deviations from the standard disk model of Shakura & Sunyaev as disk thickness H/R or the value of alpha increases. The latter is an analytical model in which the viscous torque is assumed to vanish at the ISCO. We consider the implications of the results for attempts to estimate black hole spin by using the standard disk model to fit continuum spectra of black hole accretion disks. We find that the error in the spin estimate is quite modest so long as H/R < 0.1 and alpha < 0.2. At worst the error in the estimated value of the spin parameter is 0.1 for a non-spinning black hole; the error is much less for a rapidly spinning hole. We also consider the density and disk thickness contrast between the gas in the disk and that inside the ISCO. The contrast needs to be large if black hole spin is to be successfully estimated by fitting the relativistically-broadened X-ray line profile of fluorescent iron emission from reflection off an accretion disk. In our hydrodynamic models, the contrast in density and thickness is low when H/R>0.1, sugesting that the iron line technique may be most reliable in extemely thin disks. We caution that these results have been obtained with a viscous hydrodynamic model and need to be confirmed with MHD simulations of radiatively cooled thin disks.Comment: 32 pages, 10 figures; accepted by Ap

    Estimating the Spin of Stellar-Mass Black Holes via Spectral Fitting of the X-ray Continuum

    Full text link
    We fit X-ray spectral data in the thermal dominant or high soft state of two dynamically confirmed black holes, GRO J1655-40 and 4U 1543-47, and estimate the dimensionless spin parameters a* = a/M of the two holes. For GRO J1655-40, using a spectral hardening factor computed for a non-LTE relativistic accretion disk, we estimate a* ~ 0.75 and ~ 0.65-0.75, respectively, from ASCA and RXTE data. For 4U 1543-47, we estimate a* ~ 0.75-0.85 from RXTE data. Thus, neither black hole has a spin approaching the theoretical maximum a* = 1.Comment: Accepted for publication in ApJ Letters, 13 pages, 3 figures; revised to include effects of power-law spectral component; spin estimates slightly lowe

    The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105

    Get PDF
    Based on a spectral analysis of the X-ray continuum that employs a fully relativistic accretion-disk model, we conclude that the compact primary of the binary X-ray source GRS 1915+105 is a rapidly-rotating Kerr black hole. We find a lower limit on the dimensionless spin parameter of a* greater than 0.98. Our result is robust in the sense that it is independent of the details of the data analysis and insensitive to the uncertainties in the mass and distance of the black hole. Furthermore, our accretion-disk model includes an advanced treatment of spectral hardening. Our data selection relies on a rigorous and quantitative definition of the thermal state of black hole binaries, which we used to screen all of the available RXTE and ASCA data for the thermal state of GRS 1915+105. In addition, we focus on those data for which the accretion disk luminosity is less than 30% of the Eddington luminosity. We argue that these low-luminosity data are most appropriate for the thin alpha-disk model that we employ. We assume that there is zero torque at the inner edge of the disk, as is likely when the disk is thin, although we show that the presence of a significant torque does not affect our results. Our model and the model of the relativistic jets observed for this source constrain the distance and black hole mass and could thus be tested by determining a VLBA parallax distance and improving the measurement of the mass function. Finally, we comment on the significance of our results for relativistic-jet and core-collapse models, and for the detection of gravitational waves.Comment: 58 pages, 18 figures. Accepted for publication in ApJ. New in this version is a proposed observational test of our spin model and the kinematic model of the radio jet

    Introducing v0.5 of the AI Safety Benchmark from MLCommons

    Get PDF
    This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark

    Introducing v0.5 of the AI Safety Benchmark from MLCommons

    Get PDF
    This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark
    corecore