9 research outputs found

    Sintered Cr/Pt and Ni/Au ohmic contacts to B12P2

    Get PDF
    Citation: Frye, C. D., Kucheyev, S. O., Edgar, J. H., Voss, L. F., Conway, A. M., Shao, Q. H., & Nikolic, R. J. (2015). Sintered Cr/Pt and Ni/Au ohmic contacts to B12P2. Journal of Vacuum Science & Technology A, 33(3), 6. doi:10.1116/1.4917010Icosahedral boron phosphide (B12P2) is a wide-bandgap semiconductor possessing interesting properties such as high hardness, chemical inertness, and the reported ability to self-heal from irradiation by high energy electrons. Here, the authors developed Cr/Pt and Ni/Au ohmic contacts to epitaxially grown B12P2 for materials characterization and electronic device development. Cr/Pt contacts became ohmic after annealing at 700 degrees C for 30 s with a specific contact resistance of 2 x 10(-4) Omega cm(2), as measured by the linear transfer length method. Ni/Au contacts were ohmic prior to any annealing, and their minimum specific contact resistance was similar to l-4 x 10(-4) Omega cm(2) after annealing over the temperature range of 500-800 degrees C. Rutherford backscattering spectrometry revealed a strong reaction and intermixing between Cr/Pt and B12P2 at 700 degrees C and a reaction layer between Ni and B12P2 thinner than similar to 25 nm at 500 degrees C. (C) 2015 American Vacuum Society

    Neonatal, infant, and childhood growth following metformin versus insulin treatment for gestational diabetes: A systematic review and meta-analysis.

    Get PDF
    BACKGROUND: Metformin is increasingly offered as an acceptable and economic alternative to insulin for treatment of gestational diabetes mellitus (GDM) in many countries. However, the impact of maternal metformin treatment on the trajectory of fetal, infant, and childhood growth is unknown. METHODS AND FINDINGS: PubMed, Ovid Embase, Medline, Web of Science, ClinicalTrials.gov, and the Cochrane database were systematically searched (from database inception to 26 February 2019). Outcomes of GDM-affected pregnancies randomised to treatment with metformin versus insulin were included (randomised controlled trials and prospective randomised controlled studies) from cohorts including European, American, Asian, Australian, and African women. Studies including pregnant women with pre-existing diabetes or non-diabetic women were excluded, as were trials comparing metformin treatment with oral glucose-lowering agents other than insulin. Two reviewers independently assessed articles for eligibility and risk of bias, and conflicts were resolved by a third reviewer. Outcome measures were parameters of fetal, infant, and childhood growth, including weight, height, BMI, and body composition. In total, 28 studies (n = 3,976 participants) met eligibility criteria and were included in the meta-analysis. No studies reported fetal growth parameters; 19 studies (n = 3,723 neonates) reported measures of neonatal growth. Neonates born to metformin-treated mothers had lower birth weights (mean difference -107.7 g, 95% CI -182.3 to -32.7, I2 = 83%, p = 0.005) and lower ponderal indices (mean difference -0.13 kg/m3, 95% CI -0.26 to 0.00, I2 = 0%, p = 0.04) than neonates of insulin-treated mothers. The odds of macrosomia (odds ratio [OR] 0.59, 95% CI 0.46 to 0.77, p < 0.001) and large for gestational age (OR 0.78, 95% CI 0.62 to 0.99, p = 0.04) were lower following maternal treatment with metformin compared to insulin. There was no difference in neonatal height or incidence of small for gestational age between groups. Two studies (n = 411 infants) reported measures of infant growth (18-24 months of age). In contrast to the neonatal phase, metformin-exposed infants were significantly heavier than those in the insulin-exposed group (mean difference 440 g, 95% CI 50 to 830, I2 = 4%, p = 0.03). Three studies (n = 520 children) reported mid-childhood growth parameters (5-9 years). In mid-childhood, BMI was significantly higher (mean difference 0.78 kg/m2, 95% CI 0.23 to 1.33, I2 = 7%, p = 0.005) following metformin exposure than following insulin exposure, although the difference in absolute weights between the groups was not significantly different (p = 0.09). Limited evidence (1 study with data treated as 2 cohorts) suggested that adiposity indices (abdominal [p = 0.02] and visceral [p = 0.03] fat volumes) may be higher in children born to metformin-treated compared to insulin-treated mothers. Study limitations include heterogeneity in metformin dosing, heterogeneity in diagnostic criteria for GDM, and the scarcity of reporting of childhood outcomes. CONCLUSIONS: Following intrauterine exposure to metformin for treatment of maternal GDM, neonates are significantly smaller than neonates whose mothers were treated with insulin during pregnancy. Despite lower average birth weight, metformin-exposed children appear to experience accelerated postnatal growth, resulting in heavier infants and higher BMI by mid-childhood compared to children whose mothers were treated with insulin. Such patterns of low birth weight and postnatal catch-up growth have been reported to be associated with adverse long-term cardio-metabolic outcomes. This suggests a need for further studies examining longitudinal perinatal and childhood outcomes following intrauterine metformin exposure. This review protocol was registered with PROSPERO under registration number CRD42018117503.MRC (MC_ UU_12012/4), BHF (RG/17/12/33167) and Isaac Newton Trust/Wellcome Trust ISSF/ University of Cambridge Joint Research Gran

    Pillar structured thermal neutron detector with 6:1 aspect ratio,”

    No full text
    Abstract-Pillar detector is an innovative solid state device structure that leverages advanced semiconductor fabrication technology to produce a device for thermal neutron detection. State-of-the-art thermal neutron detectors have shortcomings in achieving simultaneously high efficiency, low operating voltage while maintaining adequate fieldability performance. By using a 3-dimensional silicon PIN diode pillar array filled with isotopic boron 10, ( 10 B) a high efficiency device is theoretically possible. The fabricated pillar structures reported in this work are composed of 2 µm diameter silicon pillars with a 4 µm pitch and pillar heights of 6 and 12 µm. The pillar detector with a 12 µm height achieved a thermal neutron detection efficiency of 7.3% at 2V

    Single-cell multi-omics analysis of the immune response in COVID-19

    Get PDF
    Analysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts (CD16+C1QA/B/C+) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34+ hematopoietic stem/progenitor cells were primed toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. Clonally expanded CD8+ T cells and an increased ratio of CD8+ effector T cells to effector memory T cells characterized severe disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy

    Single-cell multi-omics analysis of the immune response in COVID-19.

    Get PDF
    Analysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts (CD16+C1QA/B/C+) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34+ hematopoietic stem/progenitor cells were primed toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. Clonally expanded CD8+ T cells and an increased ratio of CD8+ effector T cells to effector memory T cells characterized severe disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy
    corecore