17 research outputs found
Caveolin-1-mediated expression and secretion of kallikrein 6 in colon cancer cells.
Kallikreins are secreted proteases that may play a functional role and/or serve as a serum biomarker for the presence or progression of certain types of cancers. Kallikrein 6 (KLK6) has been shown to be upregulated in several types of cancers, including colon. The aims of this study were to elucidate pathways that influence KLK6 gene expression and KLK6 protein secretion in the HCT116 human colon cancer cells. Our data indicate a central role for caveolin-1 (CAV-1), the main structural protein of caveolae, in both KLK6 gene expression and protein secretion. Sucrose gradient subcellular fractionation reveals that CAV-1 and KLK6 colocalize to lipid raft domains in the plasma membrane of HCT116 cells. Furthermore, we show that CAV-1, although it does not directly interact with the KLK6 molecule, enhances KLK6 secretion from the cells. Deactivation of CAV-1, through SRC-mediated phosphorylation, decreased KLK6 secretion. We also demonstrate that, in colon cancer cells, CAV-1 increased the amount of phosphorylated AKT in cells by inhibiting the activity of the AKT-negative regulators PP1 and PP2A. This study demonstrates that proteins such as CAV-1 and AKT, which are known to be altered in colon cancer, affect KLK6 expression and KLK6 secretion
Fluorescent Mimics of Cholesterol that Rapidly Bind Surfaces of Living Mammalian Cells
Mammalian cells acquire cholesterol, a critical membrane constituent, through multiple mechanisms. We synthesized mimics of cholesterol, fluorescent N-alkyl-3β-cholesterylamine-glutamic acids, that are rapidly incorporated into cellular plasma membranes compared with analogous cholesteryl amides, ethers, esters, carbamates, and a sitosterol analogue. This process was inhibited by ezetimibe, indicating a receptor-mediated uptake pathway
TPH2 polymorphisms and expression in Prader-Willi syndrome subjects with differing genetic subtypes
Prader-Willi syndrome (PWS) is a genetic imprinting disease that causes developmental and behavioral disturbances resulting from loss of expression of genes from the paternal chromosome 15q11-q13 region. In about 70% of subjects, this portion of the paternal chromosome is deleted, while 25% have two copies of the maternal chromosome 15, or uniparental maternal disomy (UPD; the remaining subjects have imprinting center defects. There are several documented physical and behavioral differences between the two major PWS genetic subtypes (deletion and UPD) indicating the genetic subtype plays a role in clinical presentation. Serotonin is known to be disturbed in PWS and affects both eating behavior and compulsion, which are reported to be abnormal in PWS. We investigated the tryptophan hydroxylase gene (TPH2), the rate-limiting enzyme in the production of brain serotonin, by analyzing three different TPH2 gene polymorphisms, transcript expression, and correlation with PWS genetic subtype. DNA and RNA from lymphoblastoid cell lines derived from 12 PWS and 12 comparison subjects were used for the determination of genetic subtype, TPH2 polymorphisms and quantitative RT-PCR analysis. A similar frequency of TPH2 polymorphisms was seen in the PWS and comparison subjects with PWS deletion subjects showing increased expression with one or more TPH2 polymorphism. Both PWS deletion and PWS UPD subjects had significantly lower TPH2 expression than control subjects and PWS deletion subjects had significantly lower TPH2 expression compared with PWS UPD subjects. PWS subjects with 15q11-q13 deletions had lower TPH2 expression compared with PWS UPD or control subjects, requiring replication and further studies to identify the cause including identification of disturbed gene interactions resulting from the deletion process
Removing Systemic Barriers to Equity, Diversity, and Inclusion: Report of the 2019 Plant Science Research Network Workshop “Inclusivity in the Plant Sciences”
A future in which scientific discoveries are valued and trusted by the general public cannot be achieved without greater inclusion and participation of diverse communities. To envision a path towards this future, in January 2019 a diverse group of researchers, educators, students, and administrators gathered to hear and share personal perspectives on equity, diversity, and inclusion (EDI) in the plant sciences. From these broad perspectives, the group developed strategies and identified tactics to facilitate and support EDI within and beyond the plant science community. The workshop leveraged scenario planning and the richness of its participants to develop recommendations aimed at promoting systemic change at the institutional level through the actions of scientific societies, universities, and individuals and through new funding models to support research and training. While these initiatives were formulated specifically for the plant science community, they can also serve as a model to advance EDI in other disciplines. The proposed actions are thematically broad, integrating into discovery, applied and translational science, requiring and embracing multidisciplinarity, and giving voice to previously unheard perspectives. We offer a vision of barrier-free access to participation in science, and a plant science community that reflects the diversity of our rapidly changing nation, and supports and invests in the training and well-being of all its members. The relevance and robustness of our recommendations has been tested by dramatic and global events since the workshop. The time to act upon them is now
Plant Science Decadal Vision 2020–2030: Reimagining the Potential of Plants for a Healthy and Sustainable Future
Plants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020–2030 frames our ability to perform vital and far‐reaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education. The Decadal Vision was developed by the participants at the Plant Summit 2019, a community event organized by the Plant Science Research Network. The Decadal Vision describes a holistic vision for the next decade of plant science that blends recommendations for research, people, and technology. Going beyond discoveries and applications, we, the plant science community, must implement bold, innovative changes to research cultures and training paradigms in this era of automation, virtualization, and the looming shadow of climate change. Our vision and hopes for the next decade are encapsulated in the phrase reimagining the potential of plants for a healthy and sustainable future. The Decadal Vision recognizes the vital intersection of human and scientific elements and demands an integrated implementation of strategies for research (Goals 1–4), people (Goals 5 and 6), and technology (Goals 7 and 8). This report is intended to help inspire and guide the research community, scientific societies, federal funding agencies, private philanthropies, corporations, educators, entrepreneurs, and early career researchers over the next 10 years. The research encompass experimental and computational approaches to understanding and predicting ecosystem behavior; novel production systems for food, feed, and fiber with greater crop diversity, efficiency, productivity, and resilience that improve ecosystem health; approaches to realize the potential for advances in nutrition, discovery and engineering of plant‐based medicines, and green infrastructure. Launching the Transparent Plant will use experimental and computational approaches to break down the phytobiome into a parts store that supports tinkering and supports query, prediction, and rapid‐response problem solving. Equity, diversity, and inclusion are indispensable cornerstones of realizing our vision. We make recommendations around funding and systems that support customized professional development. Plant systems are frequently taken for granted therefore we make recommendations to improve plant awareness and community science programs to increase understanding of scientific research. We prioritize emerging technologies, focusing on non‐invasive imaging, sensors, and plug‐and‐play portable lab technologies, coupled with enabling computational advances. Plant systems science will benefit from data management and future advances in automation, machine learning, natural language processing, and artificial intelligence‐assisted data integration, pattern identification, and decision making. Implementation of this vision will transform plant systems science and ripple outwards through society and across the globe. Beyond deepening our biological understanding, we envision entirely new applications. We further anticipate a wave of diversification of plant systems practitioners while stimulating community engagement, underpinning increasing entrepreneurship. This surge of engagement and knowledge will help satisfy and stoke people\u27s natural curiosity about the future, and their desire to prepare for it, as they seek fuller information about food, health, climate and ecological systems
Recommended from our members
Regulation of Kallikrein 6 Gene Expression and Protein Secretion in Colon Cancer Model Systems
Colon cancer occurs in over 150,000 men and women in the United States each year and is fatal about one third of the time. There are many well characterized genetic transformations which commonly occur during colon carcinogenesis, including mutations in the Adenometous Polyposis Coli (APC), Kirsten RAS (K-RAS) and p53 genes among many others. There are also many alterations in gene and protein expression which are not yet completely elucidated. We have identified kallikrein 6 (KLK6) as a gene whose expression is dependent on cancer associated proteins such as K-RAS, SRC and caveolin-1 (CAV-1). KLK6 is a member of the kallikrein protein family which consists of 15 secreted serine proteases. Like other types of proteases, kallikreins have been demonstrated to play a role in cancer progression and they hold promise as potential cancer biomarkers. The up-regulation of KLK6 was first identified by performing a microarray analysis on a mutant K-RAS transfected Caco2 cells. The activated K-RAS transfected cells expressed significantly more KLK6 than the mock transfected controls. Pathways downstream of K-RAS were found to induce KLK6 gene expression, including the p42/44 MAPK and the PI3-K/AKT pathways. Caveolae, plasma membrane associated structures, and their principle protein component, CAV-1, positively influence both KLK6 gene expression and KLK6 protein secretion in HCT116 colon cancer derived cells. Finally, it is shown that KLK6 increases the invasive potential of cells through laminin and Matrigel. Because KLK6 plays a role in cancer progression it may serves as a novel therapeutic target. Additionally, KLK6 holds potential for use as a serum biomarker for multiple types of cancer, including colon cancer for colon and other types of cancer
APOA1 gene polymorphisms in the South Asian immigrant population in the United States
Background : Coronary artery disease (CAD) is a leading cause of death in the United States. South Asian immigrants (SAIs) from the Indian subcontinent living in the US are disproportionately at higher risk of CAD than other immigrant populations. Unique genetic factors may predispose SAIs to increased risk of developing CAD when adopting a Western lifestyle including a higher-fat diet, more sedentary behavior and additional gene-environment interactions. SAIs are known to have low levels of the protective high density lipoprotein (HDL) and an altered function for Apo-lipoprotein A-1 (ApoA1), the main protein component of HDL cholesterol. One gene that may be genetically distinctive in this population is APOA1 which codes for ApoA-1 protein, a potentially important contributing factor in the development of CAD.
Materials and Methods : DNA sequencing was performed to determine the status of the seven single-nucleotide polymorphisms (SNPs) in the APOA1 gene from 94 unrelated SAI adults. Genotypes, allelic frequencies, and intragenic linkage disequilibrium of the APOA1 SNPs were calculated.
Results : Several polymorphisms and patterns were common among persons of south Asian ethnicity. Frequencies for SNPs T655C, T756C and T1001C were found to be different than those reported in European Caucasian individuals. Linkage disequilibrium was found to be present between most (13 of 15) SNP pairings indicating common inheritance patterns.
Conclusions : SAIs showed variability in the sequence of the APOA1 gene and linkage disequilibrium for most SNPS. This pattern of APOA1 SNPs may contribute to decreased levels of HDL cholesterol reported in SAIs, leading to an increased risk for developing CAD in this population
Recommended from our members
Targeted bisulfite sequencing for biomarker discovery.
Cytosine methylation is one of the best studied epigenetic modifications. In mammals, DNA methylation patterns vary among cells and is mainly found in the CpG context. DNA methylation is involved in important processes during development and differentiation and its dysregulation can lead to or is associated with diseases, such as cancer, loss-of-imprinting syndromes and neurological disorders. It has been also shown that DNA methylation at the cellular, tissue and organism level varies with age. To overcome the costs of Whole-Genome Bisulfite Sequencing, the gold standard method to detect 5-methylcytosines at a single base resolution, DNA methylation arrays have been developed and extensively used. This method allows one to assess the status of a fraction of the CpG sites present in the genome of an organism. In order to combine the relatively low cost of Methylation Arrays and digital signals of bisulfite sequencing, we developed a Targeted Bisulfite Sequencing method that can be applied to biomarker discovery for virtually any phenotype. Here we describe a comprehensive step-by-step protocol to build a DNA methylation-based epigenetic clock