1,678 research outputs found

    Ground state of Li and Be+^+ using explicitly correlated functions

    Full text link
    We compare the explicitly correlated Hylleraas and exponential basis sets in the evaluations of ground state of Li and Be+^+. Calculations with Hylleraas functions are numerically stable and can be performed with the large number of basis functions. Our results for ground state energies 7.47806032391010(32)-7.478 060 323 910 10(32), 14.32476317679043(22)-14.324 763 176 790 43(22) of Li and Be+^+ correspondingly, are the most accurate to date. When small basis set is considered, explicitly correlated exponential functions are much more effective. With only 128 functions we obtained about 10910^{-9} relative accuracy, but the severe numerical instabilities make this basis costly in the evaluation.Comment: 15 page

    Angular momentum spatial distribution symmetry breaking in Rb by an external magnetic field

    Get PDF
    Excited state angular momentum alignment -- orientation conversion for atoms with hyperfine structure in presence of an external magnetic field is investigated. Transversal orientation in these conditions is reported for the first time. This phenomenon occurs under Paschen Back conditions at intermediate magnetic field strength. Weak radiation from a linearly polarized diode laser is used to excite Rb atoms in a cell. The laser beam is polarized at an angle of pi/4 with respect to the external magnetic field direction. Ground state hyperfine levels of the 5S_1/2 state are resolved using laser-induced fluorescence spectroscopy under conditions for which all excited 5P_3/2 state hyperfine components are excited simultaneously. Circularly polarized fluorescence is observed to be emitted in the direction perpendicular to both to the direction of the magnetic field B and direction of the light polarization E. The obtained circularity is shown to be in quantitative agreement with theoretical predictions.Comment: Accepted for publication in Phys. Rev.

    Liquid–liquid phase separation of the Golgi matrix protein GM130

    Get PDF
    Golgins are an abundant class of peripheral membrane proteins of the Golgi. These very long (50–400 nm) rod-like proteins initially capture cognate transport vesicles, thus enabling subsequent SNARE-mediated membrane fusion. Here, we explore the hypothesis that in addition to serving as vesicle tethers, Golgins may also possess the capacity to phase separate and, thereby, contribute to the internal organization of the Golgi. GM130 is the most abundant Golgin at the cis Golgi. Remarkably, overexpressed GM130 forms liquid droplets in cells analogous to those described for numerous intrinsically disordered proteins with low complexity sequences, even though GM130 is neither low in complexity nor intrinsically disordered. Virtually pure recombinant GM130 also phase-separates into dynamic, liquid-like droplets in close to physiological buffers and at concentrations similar to its estimated local concentration at the cis Golgi

    Interferometric signatures of single molecules

    Get PDF
    We built an, interferometer where one of the two slits of a classical Young's setup is replaced by a single molecule embedded in a solid matrix. This enabled direct measurement of the first order coherence of the 0-0 single-molecule emission, which at high excitation powers proves to be split in coherent and incoherent parts. We demonstrate an order of magnitude higher precision in axial localization of single molecules in comparison with that of confocal microscopy. These experiments open a possibility for single-molecule holography. Detection of single molecules with low luminescence quantum yields could be another application of this technique

    Imprints of management history on hemiboreal forest ecosystems in the Baltic States

    Get PDF
    In the Baltic States region, anthropogenic disturbances at different temporal and spatial scales mostly determine dynamics and development phases of forest ecosystems. We reviewed the state and condition of hemiboreal forests of the Baltic States region and analyzed species composition of recently established and permanent forest (PF). Agricultural deforestation and spontaneous or artificial conversion back to forest is a scenario leading to ecosystems designated as recent forest (RF, age up to two hundred years). Permanent forest (PF) was defined as areas with no records of agricultural activity during the last 200 yr, including mostly forests managed by traditional even-aged (clear-cut) silviculture and salvage after natural disturbances. We hypothesized that RF would have distinctive composition, with higher dominance by hardwoods (e.g., aspen and birch), compared to PF. Ordination revealed divergence in the RF stands; about half had the hypothesized composition distinct from PF, with a tight cluster of stands in the part of the ordination space with high hardwood dominance, while the remaining RF stands were scattered throughout the ordination space occupied by PF with highly variable species composition. Planting of conifers, variability in site quality, and variability in spatial proximity to PF with relatively natural ecosystem legacies likely explained the variable compositions of this latter group of RF. We positioned the observations of RF in a classic quantification of site type conditions (based on Estonian forest vegetation survey previously carried out by LA mu hmus), which indicated that RF was more likely to occur on areas of higher soil fertility (in ordination space). Climatic and anthropogenic changes to RF create complex dynamic trends that are difficult to project into the future. Further research in tracing land use changes (using pollen analysis and documented evidence) should be utilized to refine the conceptual framework of ecosystem legacy and memory. Occurrence and frequency of deforestation and its characteristics as a novel disturbance regime are of particular interest.Peer reviewe

    On the Theory of Vibronic Superradiance

    Full text link
    The Dicke superradiance on vibronic transitions of impurity crystals is considered. It is shown that parameters of the superradiance (duration and intensity of the superradiance pulse and delay times) on each vibronic transition depend on the strength of coupling of electronic states with the intramolecular impurity vibration (responsible for the vibronic structure of the optical spectrum in the form of vibrational replicas of the pure electronic line) and on the crystal temperature through the Debye-Waller factor of the lattice vibrations. Theoretical estimates of the ratios of the time delays, as well as of the superradiance pulse intensities for different vibronic transitions well agree with the results of experimental observations of two-color superradiance in the polar dielectric KCl:O2-. In addition, the theory describes qualitatively correctly the critical temperature dependence of the superradiance effect.Comment: 8 pages, 1 figur
    corecore