31 research outputs found

    Elaboration of wide bandgap CIGS on silicon by electrodeposition of stacked metal precursors and sulfur annealing for tandem solar cell applications

    No full text
    International audienceA method was developed for the electrodeposition of Cu-In-Ga precursor layers to elaborate Cu(In,Ga)(S,Se) 2 (CIGS) thin films on silicon substrates for future application as silicon/wide-gap CIGS tandem solar cells. An underlayer of Ag was first deposited on silicon substrates to ensure a good adhesion of the electrodeposited stack and to serve as cathode during the deposition process. Cu, In and Ga layers were then sequentially electrodeposited. Ag-Cu-In-Ga precursor layers were finally subjected to elemental sulfur annealing at 600°C. Formation of compact and adherent AgCIGS is observed. X ray diffraction and photoluminescence analyses confirm the formation of wide-gap CIGS of about 1.6 eV, with a spontaneous gallium grading over the depth of the sample leading to the formation of a bi-layer structure with a gallium rich layer at the interface with silicon

    Pure sulfide wide gap CIGS on silicon for tandem applications by exploring versatile coevaporation of metallic films and sulfur annealing

    No full text
    International audienceCu(In,Ga)(S,Se)(2) (CIGS) is a good candidate for tandem solar cell applications, thanks to its bandgap which can be tuned by changing the ratios In/Ga and Se/S. In particular, widegap CIGS is well suited to be implemented into tandem solar cells with silicon bottom cells, the CIGS acting as the top semi-transparent solar cell. Pure sulfide 1.55 eV CIGS already reached efficiencies of 16,9 % via a two-step route consisting of the deposition of metals followed by a reactive sulfur annealing [1], and a 14.2% efficient solar cell was recently reported by Barreau et al, for a bandgap of 1.6 eV based on co-evaporation [2]. In this work, we report on the investigation of two step CIGS deposition on silicon for tandem application. The CIGS absorber is deposited via a sequential method, where Cu, In and Ga are deposited by versatile co-evaporation process, followed by an annealing at 600 degrees C in presence of sulfur powder. Optimization of deposition and annealing conditions led to the formation of a dense and adherent CIGS film on silicon. EDX mapping analysis show the formation of a two-layer structure which is suitable for high efficiency cells [2] with overall Cu(In+Ga) (CGI) of 1,0. XRD and PL analysis confirm the formation of qualitative wide gap CIGS material. This work shows the suitability of using this coevaporation method for exploring the synthesis of wide-gap pure sulfide CIGS on silicon. A further investigation on the addition of selenium during the evaporation process shows the possibility to tune the gallium grading in the final CIGSu(Se) layer
    corecore