159 research outputs found

    Apolipoprotein A-I and A-I mimetic peptides: a role in atherosclerosis

    Get PDF
    Cardiovascular disease remains a major cause of morbidity and mortality in the westernized world. Atherosclerosis is the underlying cause of most cardiovascular diseases. Atherosclerosis is a slowly evolving chronic inflammatory disorder involving the intima of large and medium sized arteries that is initiated in response to high plasma lipid levels, especially LDL. Cells of both the innate and adaptive immunity are involved in this chronic inflammation. Although high plasma LDL levels are a major contributor to most stages of the evolution of atherosclerosis, HDL and its major protein apoA-I possess properties that attenuate and may even reverse atherosclerosis. Two major functions are the ability to induce the efflux of cholesterol from cells, particularly lipid-loaded macrophages, in the artery wall for transfer to the liver, a process referred to as reverse cholesterol transport, and the ability to attenuate the pro-inflammatory properties of LDL. The removal of cellular cholesterol from lipid-loaded macrophages may also be anti-inflammatory. One of the most promising therapies to enhance the anti-atherogenic, anti-inflammatory properties of HDL is apoA-I mimetic peptides. Several of these peptides have been shown to promote cellular cholesterol efflux, attenuate the production of pro-inflammatory cytokines by macrophages, and to attenuate the pro-inflammatory properties of LDL. This latter effect may be related to their high affinity for oxidized lipids present in LDL. This review discusses the functional properties of the peptides and their effect on experimental atherosclerosis and the results of initial clinical studies in humans

    Serum Amyloid A Facilitates Early Lesion Development in \u3cem\u3eLdlr\u3csup\u3e-/-\u3c/sup\u3e\u3c/em\u3e Mice

    Get PDF
    BACKGROUND: Atherosclerosis is a chronic inflammatory disorder, and several studies have demonstrated a positive association between plasma serum amyloid A (SAA) levels and cardiovascular disease risk. The aim of the study was to examine whether SAA has a role in atherogenesis, the underlying basis of most cardiovascular disease. METHODS AND RESULTS: Mice globally deficient in acute-phase isoforms Saa1 and Saa2 (Saa-/-) were crossed to Ldlr-/- mice (Saa-/-Ldlr-/-). Saa-/-Ldlr-/- mice demonstrated a 31% reduction in lesional area in the ascending aorta but not in the aortic root or innominate artery after consuming a high-fat, high-cholesterol Western-type diet for 6 weeks. The lesions were predominantly macrophage foam cells. The phenotype was lost in more mature lesions in mice fed a Western-type diet for 12 weeks, suggesting that SAA is involved in early lesion development. The decreased atherosclerosis in the Saa-/-Ldlr-/- mice occurred despite increased levels of blood monocytes and was independent of plasma lipid levels. SAA is produced predominantly by hepatocytes and macrophages. To determine which source of SAA may have a dominant role in lesion development, bone marrow transplantation was performed. Ldlr-/- mice that received bone marrow from Saa-/-Ldlr-/- mice had slightly reduced ascending aorta atherosclerosis compared with Saa-/-Ldlr-/- mice receiving bone marrow from Ldlr-/- mice, indicating that the expression of SAA by macrophages may have an important influence on atherogenesis. CONCLUSIONS: The results indicate that SAA produced by macrophages promotes early lesion formation in the ascending aorta

    Selective suppression of adipose tissue apoE expression impacts systemic metabolic phenotype and adipose tissue inflammation

    Get PDF
    apoE is a multi-functional protein expressed in several cell types and in several organs. It is highly expressed in adipose tissue, where it is important for modulating adipocyte lipid flux and gene expression in isolated adipocytes. In order to investigate a potential systemic role for apoE that is produced in adipose tissue, mice were generated with selective suppression of adipose tissue apoE expression and normal circulating apoE levels. These mice had less adipose tissue with smaller adipocytes containing fewer lipids, but no change in adipocyte number compared with control mice. Adipocyte TG synthesis in the presence of apoE-containing VLDL was markedly impaired. Adipocyte caveolin and leptin gene expression were reduced, but adiponectin, PGC-1, and CPT-1 gene expression were increased. Mice with selective suppression of adipose tissue apoE had lower fasting lipid, insulin, and glucose levels, and glucose and insulin tolerance tests were consistent with increased insulin sensitivity. Lipid storage in muscle, heart, and liver was significantly reduced. Adipose tissue macrophage inflammatory activation was markedly diminished with suppression of adipose tissue apoE expression. Our results establish a novel effect of adipose tissue apoE expression, distinct from circulating apoE, on systemic substrate metabolism and adipose tissue inflammatory state

    Characterization of an electron conduit between bacteria and the extracellular environment

    Get PDF
    A number of species of Gram-negative bacteria can use insoluble minerals of Fe(III) and Mn(IV) as extracellular respiratory electron acceptors. In some species of Shewanella, deca-heme electron transfer proteins lie at the extracellular face of the outer membrane (OM), where they can interact with insoluble substrates. To reduce extracellular substrates, these redox proteins must be charged by the inner membrane/periplasmic electron transfer system. Here, we present a spectro-potentiometric characterization of a trans-OM icosa-heme complex, MtrCAB, and demonstrate its capacity to move electrons across a lipid bilayer after incorporation into proteoliposomes. We also show that a stable MtrAB subcomplex can assemble in the absence of MtrC; an MtrBC subcomplex is not assembled in the absence of MtrA; and MtrA is only associated to the membrane in cells when MtrB is present. We propose a model for the modular organization of the MtrCAB complex in which MtrC is an extracellular element that mediates electron transfer to extracellular substrates and MtrB is a trans-OM spanning ß-barrel protein that serves as a sheath, within which MtrA and MtrC exchange electrons. We have identified the MtrAB module in a range of bacterial phyla, suggesting that it is widely used in electron exchange with the extracellular environment

    Use of diagnosis codes for detection of clinically significant opioid poisoning in the emergency department: A retrospective analysis of a surveillance case definition

    Get PDF
    Abstract Background Although fatal opioid poisonings tripled from 1999 to 2008, data describing nonfatal poisonings are rare. Public health authorities are in need of tools to track opioid poisonings in near real time. Methods We determined the utility of ICD-9-CM diagnosis codes for identifying clinically significant opioid poisonings in a state-wide emergency department (ED) surveillance system. We sampled visits from four hospitals from July 2009 to June 2012 with diagnosis codes of 965.00, 965.01, 965.02 and 965.09 (poisoning by opiates and related narcotics) and/or an external cause of injury code of E850.0-E850.2 (accidental poisoning by opiates and related narcotics), and developed a novel case definition to determine in which cases opioid poisoning prompted the ED visit. We calculated the percentage of visits coded for opioid poisoning that were clinically significant and compared it to the percentage of visits coded for poisoning by non-opioid agents in which there was actually poisoning by an opioid agent. We created a multivariate regression model to determine if other collected triage data can improve the positive predictive value of diagnosis codes alone for detecting clinically significant opioid poisoning. Results 70.1 % of visits (Standard Error 2.4 %) coded for opioid poisoning were primarily prompted by opioid poisoning. The remainder of visits represented opioid exposure in the setting of other primary diseases. Among non-opioid poisoning codes reviewed, up to 36 % were reclassified as an opioid poisoning. In multivariate analysis, only naloxone use improved the positive predictive value of ICD-9-CM codes for identifying clinically significant opioid poisoning, but was associated with a high false negative rate. Conclusions This surveillance mechanism identifies many clinically significant opioid overdoses with a high positive predictive value. With further validation, it may help target control measures such as prescriber education and pharmacy monitoring
    • …
    corecore