828 research outputs found
A history of the University of Illinois British Brass Band, 1981 to the present
On November 15, 1981, the University of Illinois British Brass Band performed its first concert, conducted by University of Illinois Assistant Director of Bands James Curnow. The ensemble’s antecedents lay in the brass bands established in Victorian England that were populated by members of the working classes, while its 1980s founding occurred in the national context of an increase in British-style brass band activity in the United States that included the formation of the North American Brass Band Association, dedicated to fostering the British-style brass band movement in the US and Canada. Several key factors contributed to the success and longevity of the University of Illinois British Brass Band, including certain characteristics of the University of Illinois Bands program and the institutional support given to the ensemble. Through analysis and synthesis of personal interviews and archival research, this dissertation reveals the identity of the ensemble as modeled on the traditional British brass band and its typical sound and repertoire, modified by the University of Illinois British Brass Band’s own solutions for particular musical and logistical demands. Providing a significant educational experience for its players (as well as its conductors) and filling an important role in the ensemble offerings of the University of Illinois Bands program, the University of Illinois British Brass Band also represented the University of Illinois statewide by way of its periodic tours and propagated the British-style brass band performance idiom through its more than 90 known performances before its hiatus began in 2011
Heteropolymer Sequence Design and Preferential Solvation of Hydrophilic Monomers: One More Application of Random Energy Model
In this paper, we study the role of surface of the globule and the role of
interactions with the solvent for designed sequence heteropolymers using random
energy model (REM). We investigate the ground state energy and surface monomer
composition distribution. By comparing the freezing transition in random and
designed sequence heteropolymers, we discuss the effects of design. Based on
our results, we are able to show under which conditions solvation effect
improves the quality of sequence design. Finally, we study sequence space
entropy and discuss the number of available sequences as a function of imposed
requirements for the design quality
Sister chromatid cohesion establishment occurs in concert with lagging strand synthesis
Cohesion establishment is central to sister chromatid tethering reactions and requires Ctf7/Eco1-dependent acetylation of the cohesin subunit Smc3. Ctf7/Eco1 is essential during S phase, and a number of replication proteins (RFC complexes, PCNA and the DNA helicase Chl1) all play individual roles in sister chromatid cohesion. While the mechanism of cohesion establishment is largely unknown, a popular model is that Ctf7/Eco1 acetylates cohesins encountered by and located in front of the fork. In turn, acetylation is posited both to allow fork passage past cohesin barriers and convert cohesins to a state competent to capture subsequent production of sister chromatids. Here, we report evidence that challenges this pre-replicative cohesion establishment model. Our genetic and biochemical studies link Ctf7/Eco1 to the Okazaki fragment flap endonuclease, Fen1. We further report genetic and biochemical interactions between Fen1 and the cohesion-associated DNA helicase, Chl1. These results raise a new model wherein cohesin deposition and establishment occur in concert with lagging strand-processing events and in the presence of both sister chromatids
Proton-electron spectrometer experiments on Gemini-4 and Gemini-7 Final report, 27 May 1963 - 30 Sep. 1966
Fluxes and spectra of electrons and protons in atmosphere measured by spectrometer experiments on Gemini spacecraf
SharpRazor: Automatic Removal Of Hair And Ruler Marks From Dermoscopy Images
Background: The removal of hair and ruler marks is critical in handcrafted image analysis of dermoscopic skin lesions. No other dermoscopic artifacts cause more problems in segmentation and structure detection. Purpose: The aim of the work is to detect both white and black hair, artifacts and finally inpaint correctly the image. Method: We introduce a new algorithm: SharpRazor, to detect hair and ruler marks and remove them from the image. Our multiple-filter approach detects hairs of varying widths within varying backgrounds, while avoiding detection of vessels and bubbles. The proposed algorithm utilizes grayscale plane modification, hair enhancement, segmentation using tri-directional gradients, and multiple filters for hair of varying widths. We develop an alternate entropy-based processing adaptive thresholding method. White or light-colored hair, and ruler marks are detected separately and added to the final hair mask. A classifier removes noise objects. Finally, a new technique of inpainting is presented, and this is utilized to remove the detected object from the lesion image. Results: The proposed algorithm is tested on two datasets, and compares with seven existing methods measuring accuracy, precision, recall, dice, and Jaccard scores. SharpRazor is shown to outperform existing methods. Conclusion: The Shaprazor techniques show the promise to reach the purpose of removing and inpaint both dark and white hair in a wide variety of lesions
MTN-001: Randomized Pharmacokinetic Cross-Over Study Comparing Tenofovir Vaginal Gel and Oral Tablets in Vaginal Tissue and Other Compartments
Background: Oral and vaginal preparations of tenofovir as pre-exposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection have demonstrated variable efficacy in men and women prompting assessment of variation in drug concentration as an explanation. Knowledge of tenofovir concentration and its active form, tenofovir diphosphate, at the putative vaginal and rectal site of action and its relationship to concentrations at multiple other anatomic locations may provide key information for both interpreting PrEP study outcomes and planning future PrEP drug development. Objective: MTN-001 was designed to directly compare oral to vaginal steady-state tenofovir pharmacokinetics in blood, vaginal tissue, and vaginal and rectal fluid in a paired cross-over design. Methods and Findings: We enrolled 144 HIV-uninfected women at 4 US and 3 African clinical research sites in an open label, 3-period crossover study of three different daily tenofovir regimens, each for 6 weeks (oral 300 mg tenofovir disoproxil fumarate, vaginal 1% tenofovir gel [40 mg], or both). Serum concentrations after vaginal dosing were 56-fold lower than after oral dosing (p<0.001). Vaginal tissue tenofovir diphosphate was quantifiable in ≥90% of women with vaginal dosing and only 19% of women with oral dosing. Vaginal tissue tenofovir diphosphate was ≥130-fold higher with vaginal compared to oral dosing (p<0.001). Rectal fluid tenofovir concentrations in vaginal dosing periods were higher than concentrations measured in the oral only dosing period (p<0.03). Conclusions: Compared to oral dosing, vaginal dosing achieved much lower serum concentrations and much higher vaginal tissue concentrations. Even allowing for 100-fold concentration differences due to poor adherence or less frequent prescribed dosing, vaginal dosing of tenofovir should provide higher active site concentrations and theoretically greater PrEP efficacy than oral dosing; randomized topical dosing PrEP trials to the contrary indicates that factors beyond tenofovir's antiviral effect substantially influence PrEP efficacy. Trial Registration: ClinicalTrials.gov NCT00592124
Chimeranet: U-Net for Hair Detection in Dermoscopic Skin Lesion Images
Hair and ruler mark structures in dermoscopic images are an obstacle preventing accurate image segmentation and detection of critical network features. Recognition and removal of hairs from images can be challenging, especially for hairs that are thin, overlapping, faded, or of similar color as skin or overlaid on a textured lesion. This paper proposes a novel deep learning (DL) technique to detect hair and ruler marks in skin lesion images. Our proposed ChimeraNet is an encoder-decoder architecture that employs pretrained EfficientNet in the encoder and squeeze-and-excitation residual (SERes) structures in the decoder. We applied this approach at multiple image sizes and evaluated it using the publicly available HAM10000 (ISIC2018 Task 3) skin lesion dataset. Our test results show that the largest image size (448 x 448) gave the highest accuracy of 98.23 and Jaccard index of 0.65 on the HAM10000 (ISIC 2018 Task 3) skin lesion dataset, exhibiting better performance than for two well-known deep learning approaches, U-Net and ResUNet-a. We found the Dice loss function to give the best results for all measures. Further evaluated on 25 additional test images, the technique yields state-of-the-art accuracy compared to 8 previously reported classical techniques. We conclude that the proposed ChimeraNet architecture may enable improved detection of fine image structures. Further application of DL techniques to detect dermoscopy structures is warranted
- …