237 research outputs found

    Editorial - David Bowie

    Get PDF
    The death of David Bowie, paradoxically, brings his ontic status into sharp relief, and, in turn, throws light on the construction of the figure of the artist – a spectre – the ‘creative practitioner’. An ontology of Bowie entails an interrogation of presence, absence and the historiographic portrait of the artist as a dead rock star (or not)

    Applications of the hollow-fibre infection model (HFIM) in viral infection studies

    Get PDF
    Conventional cell culture systems involve growing cells in stationary cultures in the presence of growth medium containing various types of supplements. At confluency, the cells are divided and further expanded in new culture dishes. This passage from confluent monolayer to sparse cultures does not reflect normal physiological conditions and represents quite a drastic physiological change that may affect the natural cell physiobiology. Hollow-fibre bioreactors were in part developed to overcome these limitations and since their inception, they have widely been used in production of monoclonal antibodies and recombinant proteins. These bioreactors are increasingly used to study antibacterial drug effects via simulation of in vivo pharmacokinetic profiles. The use of the hollow-fibre infection model (HFIM) in viral infection studies is less well developed and in this review we have analysed and summarized the current available literature on the use of these bioreactors, with an emphasis on viruses. Our work has demonstrated that this system can be applied for viral expansion, studies of drug resistance mechanisms, and studies of pharmacokinetic/pharmacodynamic (PK/PD) of antiviral compounds. These platforms could therefore have great applications in large-scale vaccine development, and in studies of mechanisms driving antiviral resistance, since the HFIM could recapitulate the same resistance mechanisms and mutations observed in vivo in clinic. Furthermore, some dosage and spacing regimens evaluated in the HFIM system, as allowing maximal viral suppression, are in line with clinical practice and highlight this 'in vivo-like' system as a powerful tool for experimental validation of in vitro-predicted antiviral activities

    Molecular Screening for Terahertz Detection with Machine-Learning-Based Methods

    Get PDF
    The molecular requirements are explored for achieving efficient signal up-conversion in a recently developed technique for terahertz (THz) detection based on molecular optomechanics. We discuss which molecular and spectroscopic properties are most important for predicting efficient THz detection and outline a computational approach based on quantum-chemistry and machine-learning methods for calculating these properties. We validate this approach by bulk and surface-enhanced Raman scattering and infrared absorption measurements. We develop a virtual screening methodology performed on databases of millions of commercially available compounds. Quantum-chemistry calculations for about 3000 compounds are complemented by machine-learning methods to predict applicability of 93 000 organic molecules for detection. Training is performed on vibrational spectroscopic properties based on absorption and Raman scattering intensities. Our top molecules have conversion intensity two orders of magnitude higher than an average molecule from the database. We also discuss how other properties like molecular shape and self-assembling properties influence the detection efficiency. We identify molecular moieties whose presence in the molecules indicates high activity for THz detection and show an example where a simple modification of a frequently used self-assembling compound can enhance activity 85-fold. The capabilities of our screening method are demonstrated on narrow-band and broadband detection examples, and its possible applications in surface-enhanced spectroscopy are also discussed

    Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry

    Get PDF
    Immobilized first-row transition metal complexes are potential low-cost electrocatalysts for selective CO2 conversion in the production of renewable fuels. Mechanistic understanding of their function is vital for the development of next-generation catalysts, although the poor surface sensitivity of many techniques makes this challenging. Here, a nickel bis(terpyridine) complex is introduced as a CO2 reduction electrocatalyst in a unique electrode geometry, sandwiched by thiol-anchoring moieties between two gold surfaces. Gap-plasmon-assisted surface-enhanced Raman scattering spectroscopy coupled with density functional theory calculations reveals that the nature of the anchoring group plays a pivotal role in the catalytic mechanism. Our in situ spectro-electrochemical measurement enables the detection of as few as eight molecules undergoing redox transformations in individual plasmonic hotspots, together with the calibration of electrical fields via vibrational Stark effects. This advance allows rapid exploration of non-resonant redox reactions at the few-molecule level and provides scope for future mechanistic studies of single molecules

    Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry

    Get PDF
    Immobilised first-row transition metal complexes are potential low-cost electrocatalysts for selective CO2 conversion to produce renewable fuels. Mechanistic understanding of their function is vital for the development of next-generation catalysts, though poor surface sensitivity of many techniques makes this challenging. Here, a nickel bis(terpyridine) complex is introduced as a CO2 reduction electrocatalyst in a unique electrode geometry, sandwiched by thiol anchoring moieties between two gold surfaces. Gap-plasmon-assisted surface-enhanced Raman scattering spectroscopy coupled with density functional theory calculations reveals the nature of the anchoring group plays a pivotal role in the catalytic mechanism by eliminating ligand loss. Our in-situ spectro-electrochemical measurement enables the detection of as few as 8 molecules undergoing redox transformations in the individual gold-sandwiched nanocavities, together with the calibration of electrical fields via vibrational Stark effects. This advance allows rapid exploration of non-resonant redox reactions at the few-molecule level and provides scope for future mechanistic studies of single-molecules

    Transformation of C60 fullerene aggregates suspended and weathered under realistic environmental conditions

    Get PDF
    The occurrence, fate and behaviour of carbon nanomaterials in the aquatic environment are dominated by their functionalization, association with organic material and aggregation behaviour. In particular, the degradation of fullerene aggregates in the aquatic environment is a primary influence on their mobility, sorption potential and toxicity. However, the degradation and kinetics of water suspensions of fullerenes remain poorly understood. In the present work, first, an analytical method based on liquid chromatography and high-resolution mass spectrometry (LC-HRMS) for the determination of C60 fullerene and their environmental transformation products was developed. Secondly, a series of C60 fullerene water suspensions were degraded under relevant environmental conditions, controlling the salinity, the humic substances content, the pH and the sunlight irradiation. Up to ten transformation products were tentatively identified, including epoxides and dimers with two C60 units linked via one or two adjacent furane-like rings. Fullerenols were not observed under these environmentally relevant conditions. The kinetics of generation of each transformation product were studied with and without simulated sunlight conditions. The ionic strength of the media, its pH and the humic substances content were observed to modulate the kinetics of generation

    Tilapia Lake Virus Vaccine Development: A Review on the Recent Advances

    Get PDF
    Tilapia tilapinevirus (or tilapia lake virus, TiLV) is a recently emerging virus associated with a novel disease affecting and decimating tilapia populations around the world. Since its initial identification, TiLV has been reported in 17 countries, often causing mortalities as high as 90% in the affected populations. To date, no therapeutics or commercial vaccines exist for TiLV disease control. Tilapia exposed to TiLV can develop protective immunity, suggesting that vaccination is achievable. Given the important role of vaccination in fish farming, several vaccine strategies are currently being explored and put forward against TiLV but, a comprehensive overview on the efficacy of these platforms is lacking. We here present these approaches in relation with previously developed fish vaccines and discuss their efficacy, vaccine administration routes, and the various factors that can impact vaccine efficacy. The overall recent advances in TiLV vaccine development show different but promising levels of protection. The field is however hampered by the lack of knowledge of the biology of TiLV, notably the function of its genes. Further research and the incorporation of several approaches including prime–boost vaccine regimens, codon optimization, or reverse vaccinology would be beneficial to increase the effectiveness of vaccines targeting TiLV and are further discussed in this review

    Evaluation of the Genotoxic and Physiological Effects of Decabromodiphenyl Ether (BDE-209) and Dechlorane Plus (DP) Flame Retardants in Marine Mussels (Mytilus galloprovincialis)

    Get PDF
    Dechlorane Plus (DP) is a proposed alternative to the legacy flame retardant decabromodiphenyl ether (BDE-209), a major component of Deca-BDE formulations. In contrast to BDE-209, toxicity data for DP are scarce and often focused on mice. Validated dietary in vivo exposure of the marine bivalve (Mytilus galloprovincialis) to both flame retardants did not induce effects at the physiological level (algal clearance rate), but induced DNA damage, as determined by the comet assay, at all concentrations tested. Micronuclei formation was induced by both DP and BDE-209 at the highest exposure concentrations (100 and 200 mu g/L, respectively, at 18% above controls). DP caused effects similar to those by BDE-209 but at lower exposure concentrations (5.6, 56, and 100 mu g/L for DP and 56, 100, and 200 mu g/L for BDE-209). Moreover, bioaccumulation of DP was shown to be concentration dependent, in contrast to BDE-209. The results described suggest that DP poses a greater genotoxic potential than BDE-20
    • …
    corecore