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The molecular requirements are explored for achieving efficient signal up-conversion in a recently
developed technique for terahertz (THz) detection based on molecular optomechanics. We discuss which
molecular and spectroscopic properties are most important for predicting efficient THz detection and
outline a computational approach based on quantum-chemistry and machine-learning methods for
calculating these properties. We validate this approach by bulk and surface-enhanced Raman scattering
and infrared absorption measurements. We develop a virtual screening methodology performed on
databases of millions of commercially available compounds. Quantum-chemistry calculations for about
3000 compounds are complemented by machine-learning methods to predict applicability of 93 000
organic molecules for detection. Training is performed on vibrational spectroscopic properties based on
absorption and Raman scattering intensities. Our top molecules have conversion intensity two orders of
magnitude higher than an average molecule from the database. We also discuss how other properties like
molecular shape and self-assembling properties influence the detection efficiency. We identify molecular
moieties whose presence in the molecules indicates high activity for THz detection and show an example
where a simple modification of a frequently used self-assembling compound can enhance activity 85-fold.
The capabilities of our screening method are demonstrated on narrow-band and broadband detection

+

examples, and its possible applications in surface-enhanced spectroscopy are also discussed.
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I. INTRODUCTION

Terahertz (THz) radiation has a high potential for
applications in medical diagnostics, security screening,
communication, astronomy, and many other fields [1-3].
The 0.1-30-THz range is often referred to as the THz gap,
because the development of powerful yet affordable
sources and efficient wideband detectors has been chal-
lenging for traditional electronics.
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The enhancement of Raman scattering signals in molecu-
lar nanocavities can potentially be harnessed in a recently
proposed device for converting THz [or mid- and far-infrared
(MIR and FIR, respectively)] radiation to visible or near-
infrared (Vis and NIR, respectively) light [4,5], thus enabling
optical detectors to be used for THz detection. To enhance the
light-matter interaction, the molecules are placed in a set of
two antennas operating on different scales [5,6]. A THz
antenna focuses radiation at the design frequency over the
molecular sample volume to enhance THz absorption via the
surface-enhanced infrared absorption (SEIRA) [7] mecha-
nism. A complementary optical antenna confines Vis or NIR
light to < 100 nm® volumes, inducing surface-enhanced
Raman scattering (SERS) [8] of molecules within the
plasmonic nanocavity. Absorption of THz radiation by the
molecules within the nanocavity causes vibrational excita-
tion of a specific normal mode, which is then probed with
a Vis or NIR laser (see Fig. 1). The increase in Raman

Published by the American Physical Society
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FIG. 1. The THz detection process. Absorption of THz radi-
ation by a molecular vibrational mode in a molecular nanocavity
increases population of excited vibrational levels, which is
detected through the increased intensity of the SERS anti-Stokes
signal of the vibrational mode in question.

anti-Stokes intensity of this mode signals the presence of
THz radiation at the frequency of the normal mode. This is
similar to the mechanism that is utilized in resonant sum-
frequency generation (SFG) spectroscopy [9].

The detection technique requires strong simultaneous
absorption and Raman activity for the vibrational mode [5].
For molecules with an inversion center, absorption and
Raman activity of normal modes are mutually exclusive.
However, there can be a significant simultaneous activity
for nonsymmetric molecules, which means that careful
selection of molecules is essential for the development of a
highly efficient detector.

The optimal molecular design can be facilitated compu-
tationally by predicting accurate vibrational frequencies
and intensities with cost-efficient methods. Additionally,
secondary selection criteria incorporate requirements for
experimental sample preparation and stability. A well-
established method for depositing molecules in nanocav-
ities is molecular self-assembly. On gold surfaces, which
are often used in plasmonic devices, self-assembled mono-
layers (SAMs) of thiol-containing molecules provide high
stability and reproducibility [10]. The capability of SAM
formation and the cost of synthetic preparation also need to
be considered for molecular selection. Here, we present a
computational framework to optimally select molecules
from databases with millions of compounds that are
available for use in experimental applications. To enable
the efficient prediction of molecular properties at this scale,
we train machine-learning models on spectroscopic data
from accurate quantum-chemistry (QC) calculations.

Machine learning (ML) for QC has seen rapid develop-
ment in recent years, and now ML has become an
invaluable tool in theoretical chemistry [11-13]. ML
methods facilitate the discovery and design of new func-
tional molecules and materials by enabling computational
screening of millions of compounds [14] or generating new
molecules [12,15] tailored for a specific application. ML
methods have been successfully developed for the predic-
tion of electronic properties of organic molecules [16—18]
and transition-metal complexes [19] and spectroscopic
properties such as electronic excitation spectra [20,21].
Highly accurate ML models have also been developed for

accessing vibrational spectroscopic properties in molecular-
dynamics calculations [22,23], including methods specifi-
cally for SERS applications [24]. These are, however, used
for accelerating calculations for single compounds and, thus,
not immediately applicable for molecular screening or
chemical discovery. Predicting accurate vibrational frequen-
cies, absorption, and Raman intensities for a large number of
compounds remains a challenge computationally.

Here, we specifically develop an ML-based method that
optimizes spectroscopic properties of molecules in plas-
monic nanocavities for THz (MIR and FIR) detection
applications. Our work focuses on a range of low-frequency
vibrational modes between 1 and 30 THz and enables the
selection of molecules with optimal THz conversion proper-
ties. Accordingly, we aim to address the following design
aspects: (i) sensitivity—the ability of a molecule to detect
THz radiation is assessed by ML models trained on results
from QC calculations; (ii) integrability—molecular structure
and potential self-assembling properties on a gold surface are
investigated; (iii) availability—databases of commercially
available compounds are explored.

We outline the underlying theory for the spectroscopic
requirements of THz detection and then describe the
computational framework for ML-based screening. We
validate the QC approach by experimental THz absorption
and Raman scattering measurements. Then, our ML results
for database screening are analyzed and discussed, address-
ing the three design aspects and demonstrating specific
narrow-band and broadband detection examples. We find
that the highly efficient ML screening compares favorably
to the costly QC calculations in terms of accuracy and that
database screening can improve the desired spectroscopic
properties by 2 orders of magnitude compared to randomly
selected molecules. Finally, we discuss other possible
applications of our database and screening method.

II. THEORY

The detector utilizes the increase in anti-Stokes intensity
of a specific vibrational mode in the presence of THz
radiation (Fig. 1) [5]. The anti-Stokes intensity for normal
mode m is given by

% = nNGiS I, (1)

where n is the population of the vibration (Bose factor for
thermal equilibrium), N is the number of molecules in the
probed volume, o™ is the anti-Stokes cross section, and I is
is the power density of the Vis/NIR laser used for inducing
the Raman anti-Stokes effect. The presence of THz
radiation at the frequency of the normal mode increases
n through vibrational pumping, while various relaxation
processes counteract this pumping. In the steady-state
approximation, the change in population can be given by
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where 6%, is the absorption cross section, 4 and hv* are the
power density and energy of the THz radiation and z,,, is the
vibrational lifetime. This approximation is valid only if
there is a moderate coupling between molecular vibration
and THz light—in the strong coupling regime interesting
new phenomena can occur [25,26], which could be utilized
in other types of applications. In Eq. (2), indirect popu-
lation gain through anharmonic effects (vibrational energy
transfer between different modes) is considered to be
negligible compared to direct pumping.

The increase in anti-Stokes intensity due to THz pump-
ing can then be written as

B

A =
T A

Nz, (cp00). (3)

In Eq. (3), the quantities dependent on the molecular
properties are N, 7,,, o4, and 6% . In the current device, if
we consider a well-structured SAM, N is inversely propor-
tional to the surface area per molecule (§), which can be
determined from experiments or, as in this work, estimated
from geometrical parameters. The vibrational lifetime 7, is
determined by a range of relaxation processes, which are
described in Ref. [5] for the current device. For simple
molecules (e.g., CO and NO) physisorbed on metal sub-
strates, 7,, varies from 1-2 ps to more than 10 ps [27];
however, it is nontrivial to predict how different vibrational
modes behave, especially for more complex chemisorbed
molecules as in our case. 7,, can also vary with the
embedding of the molecules inside plasmonic cavities
through the Purcell effect, and the modeling of this requires
the calculation of electromagnetic contributions specific to
the cavity and the exact positions of the molecules therein.
Vibrational modes with large z,, could possibly be targeted
to enhance the sensitivity, but this is out of the scope of the
current study.

In the current device, due to plasmonic effects, the THz
and Raman in-out fields are all predominantly in the
direction normal to the gold surfaces. Ideally, the cross
sections in Eq. (3) would be averaged for the specific
distribution of molecular orientations present in experi-
ments [28]. However, detailed experimental studies on
SAM structures are available only for a limited set of
compounds, mostly alkyl-thiols and some simple aryl-
thiols [29]. Even for these molecules, the optimal tilting
of the molecular axis can vary from 5 + 5° to 49 + 5° [29].
For chemically more complex molecules, even less is
known about the structure and the effects of depositing
nanoparticles on top of the SAM, surface reconstruction, or
stability [30]. Computational modeling of SAMs is also
challenging [31], and it usually requires prior knowledge of
packing parameters. Without access to wide-ranging

experimental data or a fast and reliable method to predict
orientation distributions for molecules in our database, we
resort to a random distribution of molecular orientations,
denoted by angle brackets in Eq. (3). Incubation time,
temperature, solvent, etc., can all influence the distribution
of orientations, and these will have to be optimized
experimentally for the best molecules, to achieve a stable
monolayer with the highest possible conversion efficiency.

In this paper, we focus on the molecular contributions to
the product of Raman and absorption cross sections, which
can be separated into the field enhancement E and the
normal mode-dependent conversion intensity I,

(omoi) ~ E(g.ny)I5,. (4)

While E is dependent on several material and geometric
factors of the THz and optical antennas, here we show only
dependencies that are affected by the choice of molecule:
the refractive index of the medium n;, and thickness g of
the material in the nanogap. To achieve optimal enhance-
ment of THz absorption, the THz antenna needs to be tuned
to the molecular vibration of interest [7]. Regarding the
enhancement of the Raman signal, we use the approxima-
tion [32] that the SERS maximum field enhancement is
proportional to g~2. Both absorption and Raman enhance-
ments are affected by n,,, which is, however, expected to
vary little between organic molecules of similar size and
SAM properties.
5, is calculated as

(S +1,)*
- (leg! |*led el?), (5)

m

I, =cC

where C is a constant scaling factor (given in Sec. S1 in
Supplemental Material [33]), 7*° and 7,, are the wave
numbers of the Vis laser and the normal mode, respectively,

' is the dipole derivative vector, and o 1is the polari-
—m =m

zability derivative tensor. The aligned THz and Raman in-
out field polarization vectors are all denoted by e. Note that
I, is connected to the increase in anti-Stokes signal due to
THz pumping, and as such it does not consider a thermal
population but rather a population increase proportional to
THz absorption intensity. The analytical formula for
calculating the molecular orientation average in angle bra-
ckets is given in the Supplemental Material, Sec. S2 [33].
We note that Ref. [5] uses a similar quantity (17,0) =
(lew, |’ lea, el*) /1w, |l I
tion-averaged) local overlap of IR and Raman fields. Our
definition does not separate the local overlap from the
sensitivity of a normal mode to THz and Vis or NIR fields,
resulting in a single quantity suitable for ranking normal
modes for THz detection. We also benefit from the
analytical calculation of the average, in contrast to numeri-
cal calculation of (77,1)-

referred to as the (orienta-
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The conversion process is normal mode specific; thus,
conversion intensities are additive. To rank a specific
molecule for THz conversion, we consider all of its normal
modes in the relevant frequency range in a target property
defined as

P= log(ZIf,,), (6)

meM

where M is the set of vibrational normal modes of the
molecule in the 30-1000 cm~! (1-30 THz) range. P is then
standardized with respect to the randomly selected mole-
cules, so that it is in units of standard deviation of the
random set (). We note that P appears to follow a normal
distribution for the randomly selected set of molecules
(Fig. 3). We also define similar absorption (A) and Raman
Stokes scattering (R) target properties (see Supplemental
Material, Sec. S3 [33]).

Apart from selecting molecules based on high P values,
other molecular properties also need to be considered to
achieve a significant anti-Stokes intensity increase. To
maximize E and N, it is optimal to ensure that a single
closely packed molecular layer is formed and to limit g to a
couple of nanometers. This means that molecular geometry,
SAM structure, and stability are also important factors
when selecting molecules for the detector. As we show
later, complex molecules are significantly more promising
for the current application than commonly used SAMs, due
to the high THz conversion rates they can achieve, but
detailed experimental and computational investigations of
their self-assembling properties are needed.

Other than the above-mentioned points, the availability
of a compound also has to be considered. Compounds that
are readily available commercially or are easy to synthesize
are preferred to facilitate production.

III. COMPUTATIONAL DESIGN FRAMEWORK

We start by building an initial database from commer-
cially available compound databases by screening for
molecules containing a single thiol group, which facilitates
adsorption on gold surfaces. The eMolecules database [34]
contains 18 million in-stock and back-ordered compounds
currently, of which 150000 contain one thiol group. The
MolPort database [35] contains 7 million in-stock com-
pounds currently, of which 32 000 are monothiols. After
removing duplicates and applying further restrictions on the
size (<3 nm) and flexibility (<4 rotatable bonds), our
database contains 93 000 unique compounds in total. For
experimental trials, we also consider well-established self-
assembling molecules from Sigma Aldrich [36] (about 20
compounds after prescreening). A notable difference from
previous ML studies is the type of molecules that are
included in the databases probed here. For our goals, it is
essential to consider molecules that are known to be
synthesizable and have an affinity to gold surfaces used
in detector prototypes. This is very different from databases

like QM9 [37] usually used as a benchmark in ML studies,
as we have a much smaller number of compounds but with
larger size (16 =4 nonhydrogen atoms compared to
maximally nine in QM9) and consisting of a wider range
of elements (S, CI, Br, I, and P in addition to C, H, O, N,
and F in QM9).

We address self-assembling properties of molecules in
the database by measuring their similarity to known self-
assembly materials. The similarity score s gives the
maximum molecular similarity between the candidate
molecule and a library of 110 known SAM materials
(see Supplemental Material, Sec. S8 [33], for more infor-
mation). We investigate the spectroscopic changes due to
molecular orientation in the nanocavity for a set of test
molecules and leave a detailed investigation of orientation
effects for future studies. For estimating g and S, we use 3D
molecular geometry and the approximation that all tested
molecules have a similar orientation (perpendicular to the
surface; see Supplemental Material, Sec. S6.2 [33]).

QC calculations are performed on 1300 randomly
selected molecules from the database of 93000. This
QC database is then extended in several rounds to
3000 molecules by including those with the highest
predicted activity based on our early ML models and other
selection criteria. Density functional theory (DFT) calcu-
lations are performed at the B3LYP/def2-SVP level for
molecules that have the thiol hydrogen atom exchanged to a
single gold atom which is a sufficient first approxima-
tion of binding to the gold surface, as discussed in Sec. V.
Further details of the computational methods are given in
Supplemental Material, Sec. S4 [33].

ML training is performed for target properties P, A, and R
separately, with elastic net (EN) and kernel ridge regression
(KRR) with a Laplacian kernel. Feature selection with Lasso
is applied to Morgan fingerprints [38] of various radii and
lengths, and hyperparameter optimization of feature gener-
ation and model parameters is performed to yield best
prediction accuracy (see also Supplemental Material,
Sec. S4 [33]). Using trained ML methods, predictions are
made for the unseen molecules from the database, and the
best candidates are chosen for additional QC investigation
based on their predicted P value. The ML training and
prediction processes, as well as the augmentation of the QC
database by the best candidates, are repeated a few times
during the development of the screening method.

IV. EXPERIMENTAL VALIDATION

To validate the computational methodology, measure-
ments are performed on a set of test molecules. As the
THz detector designs are still being developed, up-converted
detection cannot yet be evaluated; therefore, the absorption
and Raman scattering experiments are performed separately.
SERS measurements are performed for SAMs formed inside
a plasmonic nanocavity. This nanocavity consists of a gold
nanoparticle coupled to its mirror-image charges in a gold
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mirror, forming a virtual dimer. A dielectric spacer layer
made of a SAM of molecules adsorbed to the gold mirror
yields a consistent gap size. Each NP in this nanoparticle-
on-mirror (NPOM) geometry is interrogated individually
through a microscope. SAM molecules located in the gap of
the NPOM interact with the plasmonically enhanced optical
field and chemically with the gold, producing SERS [32,39].
SERS measurements on NPOM structures provide a good
approximation to the THz device architecture, but THz-
frequency molecular vibrations are environmentally sensi-
tive and there are many unknown factors of the state of
molecules in SAMs, so as a fast first validation stage, we also
measure Raman and absorption spectra in powder and
solution phases.

Experimental methods are detailed in Supplemental
Material, Sec. S5 [33]. To account for variations in overall
intensity, multiple measurements per compound are per-
formed. The spectral angle is used as a distance measure
between measured and calculated spectra. In order to analyze
measurements and enhance similarity of measured and
calculated spectra, a range of postprocessing techniques
are applied (see Supplemental Material, Sec. S6 [33], for
details). Automatic frequency scaling is performed based on
spectral distance. A clustering approach is applied to screen
out contaminated or otherwise outlier experimental spectra.
For modeling powder and solution measurements, the best-
matching chemical form of each molecule is chosen from
the various tautomers, ionic forms, etc., considered in the
calculations. To correct for the number of molecules giving
the measured signal, we use concentration (c) for solution
measurements, molecular cell volume (V) for powder mea-
surements, and occupied surface area (S) for NPOM mea-
surements. The measured spectra are background corrected
and integrated over the recorded spectral range
(150-1200 cm™" for powder, 1101220 cm™' for solution,
110-1200 cm~! for NPOM Raman, and 580—1700 cm™! for
powder absorption). To check the correlation between
measurements and calculations, we compare integrated
Raman intensities

R= /  Rap, (7)
Iz

where IF is the measured or calculated Raman Stokes
intensity and 7; and 7, are, respectively, the minimum and
maximum recorded wave numbers in experiments.

V. EXPERIMENTAL RESULTS

Comparison of measured spectra with calculations for the
test molecules shows that characteristics of the Raman
spectra are very well described by the current computational
methods (see Supplemental Material, Sec. S6 [33], for
individual spectra and spectral distances). Analyzing the
spectral distance for narrower frequency ranges of the
solution spectra reveals that the match between experiment
and calculations is similarly accurate across most of the

frequency range, with larger deviations only in the lowest
frequency range (110-269 cm™"). This is not surprising, as
low-frequency modes are easily perturbed by the environ-
ment, and this effect is neglected in the current calculations.
Calculations with a larger basis set (aug-cc-pVTZ) and
polarizable continuum solvent model provide smaller spec-
tral distances from solution-phase experiments (0.256 on
average, compared to 0.298 with the def2-SVP basis set).
The aug-cc-pVTZ basis set partially corrects the over-
estimation of low-wave-number mode intensities by the
def2-SVP basis set.

A comparison of integrated Raman Stokes intensities
between experiment (solution and NPOM) and calculation
are shown in Figs. 2(a) and 2(b), while powder data are
shown in Supplemental Material, Sec. S6.5 [33]. Similar
plots for subranges of the solution spectra are given in
Supplemental Material, Sec. VI.3 [33]. Integrated inten-
sities of solution measurements have low variance, with
highest variations in the lowest frequency range
(110-269 cm™"). R? scores are above 0.80 for all subranges
except 110-269 cm~! and 427-586 cm~!, which have 0.38
and 0.23, respectively. In the full frequency range, there is
also a strong correlation between experiment and calcu-
lation [R?> = 0.81, Fig. 2(a)]. Interestingly, the aug-cc-
pVTZ basis set does not improve the correlation between
integrated intensities (R> = 0.79 for the full frequency
range; see Supplemental Material, Sec. VI. 3 [33]), which
indicates that def2-SVP is able to reproduce the differences
in integrated intensities between molecules sufficiently.
Calculations with explicit solvent might be required to
account for some of the remaining discrepancies in peak
positions and intensities. This is expected to be most
important for molecules that can form H bonds with the
solvent but is out of the scope of the current study.

The current computational model provides a remarkably
accurate match with NPOM spectra [Fig. 2(d)], with a
mean spectral distance of 0.170 (0.157 with the aug-cc-
pVTZ basis), which indicates that a single gold atom
recovers the most immediate chemical effects of the
molecular monolayer formed on the gold surface, consis-
tent with previous studies [40]. The spectral distance is
somewhat larger for molecule 8 than for the other mole-
cules. This is due partly to the lower signal-to-noise ratio of
the experimental spectrum and high variations of spectral
features between measurements, which suggest that its
SAM is not as uniform as the others.

Computational studies of thiophenol investigate the
effect of including gold clusters [41] and slabs with
periodic boundary conditions for different binding sites
[42] on the vibrational spectrum. Our result with a single
gold atom gives a spectrum very similar to the best matches
with SERS experiments in these studies. Coordination
geometries have the largest effect on the Raman intensities
of 200400 cm~! modes, that have significant contribu-
tions from the sulfur atom [41]. Some of the main
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FIG. 2. Comparison of calculated and experimental Raman Stokes properties of a set of test molecules. (a) Corrected solution-phase
(Rexp/€) vs calculated (R, ) integrated intensities. (b) NPOM measured (R.p,) vs corrected calculated (Reqc ES ~1) integrated intensities.
(c) Measured molecules. (d) Mean experimental and calculated spectra for NPOM systems along with spectral distances (d) between

experiment and calculation.

discrepancies we observe between calculations and experi-
ments are in this wave-number range, and we expect that
simulations with gold clusters or slabs could resolve these.
On the other hand, these investigations would further
complicate orientation studies and database screening; thus,
it is best to perform these investigations only on the highest-
ranked molecules. Any remaining differences between the
measured and calculated spectra are expected to be due to
intermolecular interactions in the SAM, especially at low
wave numbers. This can be investigated with molecular-
dynamics simulations for specific molecules with known
SAM structures, but, due to the lack of information about
SAMs and high costs of simulations, such approaches are
currently not available for the large-scale study of our
database.

With corrections for £ and S, the current computational
model employing orientation-averaged quantities can predict
integrated intensities very well [R> = 0.95 for both basis
sets; see Fig. 2(b) for def2-SVP results]. Based on previous
studies, molecules 3 and 13 are estimated to have a tilting
angle of about 22° on gold [43], and molecules 1 and 5 are
expected to have a similar tilt. To investigate the effects of
molecular orientation, we determine Raman intensities for
0°- and 22°-tilted molecules as well (see Supplemental
Material, Sec. VI.4 [33]). We find that all four aromatic
molecules are influenced similarly by tilting angle, with a
larger decrease in R, but practically unaffected spectral
features. This behavior is explained by the high anisotropy of
their polarizabilities (281-378 bohr?), with highest polar-
izability along the long molecular axis (0° tilt). On the other
hand, R, of molecule 8 is much less sensitive to changes in
tilting, while its spectral features vary more with tilting angle;

this is in line with its low anisotropy (70 bohr?). The similar,
rodlike structure of molecules 1, 3, 5, and 13 causes a
pronounced decrease of gap size with tilting angle, while the
gap size of bulky molecule 8 is less sensitive to tilting.
Agreement between Rexp and corrected R, for 0° and 22°

tilts is similar to the full orientation-averaged case, with R>
scores 0f 0.92 and 0.93, respectively. Ongoing measurements
of a larger set of chemically diverse molecules will be able to
validate the computational method for simulating NPOM
systems further.

The existence of normal modes that are intensive in both
absorption and Raman processes is verified by the com-
parison of powder measurements with simulations. Powder
measurements are considerably easier to perform than
solution or NPOM measurements, but comparison with
simulations on single molecules is not expected to give very
good agreement, as environmental effects and molecular
orientation in crystal structures are not accounted for.
Nevertheless, calculations for the thiol(-SH) forms provide
a reasonable match with powder Raman spectra (mean
distance 0.332) and integrated intensities (R> = 0.63). The
agreement can be improved by simulating the crystal
environment with molecular dimers and identifying the
best-matching chemical forms (mean distance = 0.295,
R?> = 0.68; see Supplemental Material, Sec. V1.5 [33]).
For absorption spectra, the highly varying peak widths
make it harder to compare with calculations, but mean
distance is also reduced in this case, from 0.273 to 0.238.
From DFT calculations, we identify normal modes that
have high conversion intensity and confirm the presence of
these peaks in the measured absorption and Raman spectra
(see Supplemental Material, Sec. VI. 5 [33]).
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VI. MACHINE-LEARNING RESULTS

The best training results achieved for the three target
properties with EN and KRR models are compiled in Table I.
The best performance is observed for A, followed by P and R.
The mean absolute errors (MAE) for the test set are low
enough to provide high-quality predictions for all three
targets, considering that our QC database covers ranges of
about 8 — 10s. The nonlinear KRR model does not seem to
improve results of the linear EN model considerably.

Best candidates for THz detection are found around 6o
(Fig. 3), which corresponds to a 2-orders-of-magnitude
increase in conversion intensity compared to random
molecules (note that P is a logarithmic, standardized
quantity). Results for the known SAM-forming molecules
of the Sigma Aldrich database are also shown in Fig. 3.
These are chemically much simpler molecules than those in
the eMolecules and MolPort databases: predominantly aryl
thiols like 1,1’-biphenyl-4-thiol [(BPT); see Fig. 3(b)] and
alkyl thiols like butanethiol [Fig. 3(a)]. These types of
molecules form stable and well-structured SAMs [29], and,
thus, they are often used in SERS experiments. Regarding
their applicability for THz detection, Fig. 3 shows that BPT
has slightly above-average performance, and butanethiol is
not suitable for the detector at all. In comparison, the best
molecules from the QC database [Figs. 3(c)-3(f)] have
about 150-340 times higher conversion intensity than
average SAM materials and 70-150 times higher intensity
than an average molecule from the 93 000 database, which
would be used if computational screening were not
performed.

Since the molecular fingerprint used as the feature vector
provides only 2D information on the molecules, the ML
models are not able to give separate predictions for con-
formers of the same molecule. Absorption and Raman
spectra are, however, sensitive to conformational changes.
Even though we limit the number of rotatable bonds to < 4,
several conformers can exist, and the conformer used in DFT
calculations might not match the dominant conformer in
experiments. Analyzing calculations on two conformers of
467 molecules, we find that the difference in P is 0.8 £ 0.7
between conformers. This might result in significantly
different ordering of top molecules. Determining the most
stable conformers of candidate molecules and corresponding
spectral properties in a nanocavity is subject to future work.

TABLE 1. Performance of different ML models on the three
target quantities, given as R” score and MAE (in units of &) for
the test set.

A R P
ML model R? MAE R? MAE R? MAE
KRR 090 0.27 0.60 049 075  0.57
EN 0.88 0.29 0.60 049 0.73  0.60
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FIG. 3. Distribution of P (standardized logarithm of summed

conversion intensity) among (blue) known self-assembly materi-
als, (orange) randomly chosen molecules, and (green) the QC
database. Some molecules with (a) low, (b) moderate, and (c)—(g)
high potential for THz detection are also depicted.

Training linear EN models enables us to determine
which molecular fragments influence the predicted proper-
ties the most by analyzing weights of features in the trained
models (Fig. 4). We note that a large weight does not
necessarily mean that the fragment in question is spectro-
scopically highly active, just that in our current database the
presence of the fragment correlates with high intensity. The
most prominent fragments for A and R are consistent with
the nature of absorption and Raman processes: polar bonds
for A and highly polarizable aromatic moieties for R. P
shares some of its most important fragments with A and R.
The optimal fingerprint radius is 1 for A, which means that
only atoms within maximally one bond distance from the
starting atom are considered; this again shows that absorp-
tion intensities are mainly bond specific, while it is 2 for R
and P, showing that larger environments are needed to
assess Raman intensities. It can be verified by looking at the
vibrations of the top molecules, that, e.g., the amine group
is among the most THz-conversion active groups. Our
trained linear EN models, therefore, provide valuable
information for designing new molecules to be synthesized,
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( ) « Training data ( ) * \\ *\
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FIG. 4. (a) ML results for target P with the EN model. Features

with largest weights in the trained EN model for (b) THz
conversion P, (c) absorption A, and (d) Raman R targets.
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TABLE II. Properties relevant in selecting molecules for THz
detection, shown for the top five molecules from the DFT
database [depicted in Figs. 3(c)-3(g)].

Mol P Puy S@AY) g@A)  a@®ohd) s

© 618 834 129 173 446 0.28
d 595 8.16 127 146 373 0.32
€ 560 7.84 31 137 315 0.85
® 541 7.62 54 174 540 0.41
(@ 530 747 27 111 271 0.68

as performance can potentially be enhanced by addition of
the most active functional groups. This is highlighted by the
example of BPT, whose conversion intensity can be
increased 85-fold by a simple substitution to an amine
group at position 4’ [Fig. 3(e)].

For selecting the best candidates, apart from the P value,
we also have to consider geometrical features, that can
influence N and E considerably. Table II compiles the most
relevant properties of the top five molecules [molecules
(c)—(g) in Fig. 3].

Geometrical properties S and ¢ are calculated for 0°
tilting angles, and thus are only crude estimations, but the
table already shows that significant differences are
expected in N and E between the top molecules. It can
be more beneficial to prioritize molecules with low S and g,
such as molecules (e) and (g), instead of choosing candi-
dates solely based on the P value. Molecules with high
anisotropy a are high risk, high reward, as they would need
to be fixed in a specific orientation to take full advantage of
their highest possible Raman cross sections, but might
result in very small cross sections if the orientation is not
right. The highest achievable P value for a specific
orientation (P,,,,) also shows that, if the orientation can
be optimized in experiments, even higher conversion
efficiency can be achieved (see Supplemental Material,
Sec. S7 [33], for orientation dependence of P). The
ordering of P, is consistent with that of P, showing
that both quantities could be used to select top molecules.
For molecules with a high s score [e.g., molecules (e) and
(2)], SAM formation is likely, and preparation techniques
can be learned from the literature of the most similar SAM
materials (see Supplemental Material, Sec. S8 [33]). In
contrast, a low s score does not imply that the molecule is
not suitable for SAM formation, just that similar types of
molecules have not been tested yet. Experimental proof of
the superiority of the candidates selected by the screening
method requires a device for testing THz conversion, which
is currently under development.

At this exploratory phase of development, the first
detector prototypes will operate at frequencies where the
top molecules have highest conversion efficiency in order
to maximize the effect. With the use of our screening
methodology, however, it is also possible to choose the
most suitable molecules for detection of specific THz light

sources and in this way tailor the device for various fields of
application. Here, we give examples for two types of THz
application: narrow-band and broadband detection. For the
narrow-band detection of atomic oxygen in planetary
atmospheres, its atomic transition at 4.745 THz
(185.3 cm™!) has been used previously [44]. We train an
ML model on a narrow frequency window around this
transition (Supplemental Material, Sec. S9 [33]). When
defining a target property for such a narrow range, it is more
beneficial to integrate broadened conversion intensities for
the frequency range [P, Eq. (S14) [33]] instead of summing
discrete intensities. This is due to a large proportion of
molecules having no transitions in this spectral range. The
MAE of predictions is higher (0.68c) than for the
30-1000-cm™" frequency range used before, but the ML
model can still differentiate between highly active and
inactive molecules. We identify the top molecules for
oxygen detection in Supplemental Material, Sec. S9 [33].

For broadband detection, not every spectral range is
suitable, as the characteristic vibrational transitions of
organic molecules do not cover the spectrum uniformly.
We select two ranges—30—-180 cm™' (0.9-5.4 THz) and
600-800 cm™! (18-24 THz), where transitions are more
dense—and apply peak broadening to model experimental
conditions. ML predictions for P are of similar quality for
the two ranges (MAE around 0.5¢), and separately trained
ML models for predicting the spectral flatness give MAEs
of about 0.1 (see Supplemental Material, Sec. S10 [33], for
details). By screening for simultaneously high values of P
and spectral flatness, top candidates for broadband appli-
cations can be identified (see Supplemental Material,
Sec. S10 [33]). One might need to compromise on a lower
sensitivity of the device to achieve broadband detection
compared to narrow-band detection, but the overall sensi-
tivity will also be highly dependent on the specific
construct of the device. We note that mixed SAMs or an
ensemble of nanocavities with different molecules could
also be used for broadband detection if they are carefully
engineered to complement each other.

VII. FURTHER APPLICATIONS

Other than for THz detection, our database and screening
method can potentially be used for other fields of appli-
cations. To mention a few promising examples, our method
can be utilized to maximize absorption intensities at
frequencies where high-intensity lasers are available and
in this way enable reaching the vibrational strong coupling
regime. In this regime, tuning the frequency of vibrational
modes in order to control chemical reactions and rates
[25,45] or creating a Raman-laser-based optical parametric
oscillator producing coherent MIR beams [26] becomes
possible. The latter would need vibrational modes that are
active in both IR and Raman, very similar to our screening
criteria for THz detection.
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Investigation of collective effects in SERS could also be
facilitated by molecular screening: The required laser
intensity that induces these effects can be reduced by careful
design, and one of the key aspects is to have a vibrational
mode with high Raman intensity [46]; for this purpose, our
database and ML model would be highly useful.

Once a detector prototype is available, this would also
open up a new way for investigating the properties of
molecules inside the nanogap. This would mean that
properties influencing the conversion efficiency of the
detector, e.g., molecular orientation, conformations, and
vibrational lifetimes, could be assessed experimentally. A
combination of IR, Raman, and SFG measurements would
be highly useful for determining orientation distributions
[28], and, therefore, carefully selected molecules could also
function as local probes of surface structure.

VIII. CONCLUSIONS

We developed a machine-learning-based computational
method for predicting the vibrational properties of mole-
cules and selecting the best candidates for THz detection
from a database of commercially available compounds. The
combination of quantum-chemistry calculations and
machine-learning methods provides accurate predictions
and saves time and cost when assessing molecules of the
database.

The quantum-chemistry method was validated for a
range of compounds by powder, solution, and nanopar-
ticle-on-mirror Raman measurements. It was shown that
most spectral features and integrated Raman intensities are
accurately predicted at the current level of modeling.
Absorption measurements confirmed the presence of vibra-
tional modes highly active in both absorption and Raman
scattering. Trained machine-learning models have shown
good accuracy of predictions for absorption, Raman scat-
tering, and THz conversion target properties. Molecular
screening of the database gives candidates with 2-orders-of-
magnitude larger THz-to-Vis and NIR conversion intensity
than molecules typically used in similar (surface-enhanced)
experimental setups. Although trained for a specific data-
base of compounds, the predictive power of the ML model
can potentially be extended to other types of compounds,
which needs to be verified by computations. Functional
groups found to correlate with higher conversion efficiency
within the database can potentially be used to enhance the
intensity elicited by commonly used molecules, as we have
shown on the example of BPT. We have also discussed how
geometrical factors and other molecular properties can
influence applicability of molecules for THz detection
and how they can be exploited for the design of highly
efficient devices.

We demonstrated the strength of our method to provide
candidate molecules for narrow-band and broadband detec-
tion applications and discussed how the molecular screen-
ing method can be highly useful for investigating

vibrational strong coupling and collective SERS effects
or probing surface structures.

In light of the recent experimental demonstrations of the
up-conversion effect [47,48], we believe that identifying
the best molecules for THz ranges will significantly
facilitate the next steps for realizing an efficient THz
detector based on molecular optomechanics in the near
future.

To inspire and facilitate the development of THz and
other applications, we share our QC database along with
interactive plotting and analysis tools as a web application;
Molecular Vibration Explorer [49].
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