72 research outputs found

    Measuring the Physical Properties of Distant Galaxies and Black Holes in the Era of Surveys

    Get PDF
    In the era of deep and wide-field surveys (e.g. SDSS, LSST, LOFAR, SKA), we have access to an ever-increasing volume of multi-wavelength data for millions of galaxies both locally and at high redshifts. However, inferring the intrinsic properties of the whole population of galaxies requires robust statistical techniques and an understanding of observational bias. In this thesis, I present a study of the Far-Infrared Radio Correlation (FIRC) – a relation which is widely used to infer star-formation rates from otherwise featureless radio sources. Using LOFAR 150MHz, FIRST 1:4GHz, and Herschel infrared luminosities derived from the new LOFAR/H-ATLAS catalogue, we investigate possible variation in the monochromatic (250mm) FIRC at low and high radio frequencies. Although the average FIRC at high radio frequency is consistent with expectations based on a standard power-law radio spectrum, the average correlation at 150MHz is not. We see evidence for redshift evolution of the FIRC at 150MHz, and find that the FIRC varies with stellar mass, dust temperature and specific star formation rate, whether the latter is probed using MAGPHYS fitting, or using mid-infrared colour as a proxy. We can explain the variation, to within σ using a Bayesian partial correlation technique. This work was published as Read et al. (2018) in the Monthly Notices of the Royal Astronomical Society. Identifying an opportunity to increase in the efficiency of black-hole mass estimations, we perform photometric reverberation mapping using the Javelin photometric damped random walk model for the QSO SDSS J144645.44 +625304.0 at ɀ = 0:351 and estimate the Hβ lag of 72 +5-1 days and black hole mass of 108:28 +0.12-0.07 Mʘ. An analysis of the reliability of photometric reverberation mapping conducted using many thousands of simulated light curves shows that we can recover any input lag less than a third of the duration of our observing campaign to within 4per cent on average given our target’s observed signal-to-noise of > 20 and cadence of 14 days. We use our suite of simulated light curves to deconvolve artefacts from the QSO’s posterior lag distribution, increasing the signal-to-noise by a factor of ~3. We exceed the signal-to-noise of the Sloan Digital Sky Survey Reverberation Mapping Project (SDSS-RM) campaign with a quarter of the observing time resulting in a ~310 per cent per cent increase in SNR efficiency over SDSS-RM. Finally, I present a study of the radio luminosity star-formation rate relation directly with the LOFAR Two Metre Sky Survey (LoTSS) DR1, in an effort to understand the mass dependency of the L150MHz - SFR slope reported by Gürkan et al. (2018). Building on our previous study of the FIRC, we develop a fast, generalised algorithm to recover Complete And Noiseless Distributions from Incomplete Data (CANDID). We find that the mass dependency is real and in agreement with previous estimations in the literature when we include the effects of selection biases present in the LoTSS DR1 sample. We also propose that type-Ia supernovae may contribute to a L150MHz excess and construct a joint distribution of our LoTSS observations and the Horizon AGN simulation to test this

    A Markov Chain Monte Carlo approach for measurement of jet precession in radio-loud active galactic nuclei

    Get PDF
    © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Jet precession can reveal the presence of binary systems of supermassive black holes. The ability to accurately measure the parameters of jet precession from radio-loud AGN is important for constraining the binary supermassive black hole population, which are expected as a result of hierarchical galaxy evolution. The age, morphology, and orientation along the line of sight of a given source often result in uncertainties regarding jet path. This paper presents a new approach for efficient determination of precession parameters using a 2D MCMC curve-fitting algorithm which provides us a full posterior probability distribution on the fitted parameters. Applying the method to Cygnus A, we find evidence for previous suggestions that the source is precessing. Interpreted in the context of binary black holes leads to a constraint of parsec scale and likely sub-parsec orbital separation for the putative supermassive binary.Peer reviewe

    The performance of photometric reverberation mapping at high redshift and the reliability of damped random walk models

    Get PDF
    Accurate methods for reverberation mapping using photometry are highly sought after since they are inherently less resource intensive than spectroscopic techniques. However, the effectiveness of photometric reverberation mapping for estimating black hole masses is sparsely investigated at redshifts higher than z ≈ 0.04. Furthermore, photometric methods frequently assume a damped random walk (DRW) model, which may not be universally applicable

    A comparison of hemagglutination inhibition and neutralization assays for characterizing immunity to seasonal influenza A

    Get PDF
    SummaryBackgroundSerum antibody to influenza can be used to identify past exposure and measure current immune status. The two most common methods for measuring this are the hemagglutination inhibition assay (HI) and the viral neutralization assay (NT), which have not been systematically compared for a large number of influenza viruses.Methods151 study participants from near Guangzhou, China were enrolled in 2009 and provided serum. HI and NT assays were performed for 12 historic and recently circulating strains of seasonal influenza A. We compared titers using Spearman correlation and fit models to predict NT using HI results.ResultsWe observed high positive mean correlation between HI and NT assays (Spearman's rank correlation, rho=0.86) across all strains. Correlation was highest within subtypes and within close proximity in time. Overall, an HI=20 corresponded to NT=10, and HI=40 corresponded to NT=20. Linear regression of log(NT) on log(HI) was statistically significant, with age modifying this relationship. Strain-specific area under a curve (AUC) indicated good accuracy (>80%) for predicting NT with HI.ConclusionsWhile we found high overall correspondence of titers between NT and HI assays for seasonal influenza A, no exact equivalence between assays could be determined. This was further complicated by correspondence between titers changing with age. These findings support generalized comparison of results between assays and give further support for use of the hemagglutination inhibition assay over the more resource intensive viral neutralization assay for seasonal influenza A, though attention should be given to the effect of age on these assays

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Get PDF
    © 2023 The Author(s) . Published by Oxford University Press on behalf of Royal Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366−-959\,nm at R∼5000R\sim5000, or two shorter ranges at R∼20 000R\sim20\,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼\sim3 million stars and detailed abundances for ∼1.5\sim1.5 million brighter field and open-cluster stars; (ii) survey ∼0.4\sim0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ∼400\sim400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z1z1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.Peer reviewe

    VizieR Online Data Catalog: H-ATLAS NGP LOFAR radio catalogue (Hardcastle+, 2016)

    Get PDF
    The NGP field was observed in four separate pointings, chosen to maximize sky covered, with the LOFAR HBA as part of the Surveys Key Science project. Observations used the HBADUALINNER mode, meaning that the station beams of core and remote stations roughly matched each other and giving the widest possible field of view. The first observation, which was made early on in LOFAR operations, was of slightly longer duration (~10h) than the others (~8h). International stations were included in some of the observations in 2014 but were not used in any of our analysis, which uses only the Dutch array. (1 data file)

    The wide-field, multiplexed, spectroscopic facility WEAVE : survey design, overview, and simulated implementation

    Get PDF
    Funding for the WEAVE facility has been provided by UKRI STFC, the University of Oxford, NOVA, NWO, Instituto de Astrofísica de Canarias (IAC), the Isaac Newton Group partners (STFC, NWO, and Spain, led by the IAC), INAF, CNRS-INSU, the Observatoire de Paris, Région Île-de-France, CONCYT through INAOE, Konkoly Observatory (CSFK), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Lund University, the Leibniz Institute for Astrophysics Potsdam (AIP), the Swedish Research Council, the European Commission, and the University of Pennsylvania.WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼ 3 million stars and detailed abundances for ∼ 1.5 million brighter field and open-cluster stars; (ii) survey ∼ 0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey  ∼ 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.PostprintPeer reviewe

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Full text link
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366−-959\,nm at R∼5000R\sim5000, or two shorter ranges at R∼20 000R\sim20\,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼\sim3 million stars and detailed abundances for ∼1.5\sim1.5 million brighter field and open-cluster stars; (ii) survey ∼0.4\sim0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ∼400\sim400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z<0.5z<0.5 cluster galaxies; (vi) survey stellar populations and kinematics in ∼25 000\sim25\,000 field galaxies at 0.3≲z≲0.70.3\lesssim z \lesssim 0.7; (vii) study the cosmic evolution of accretion and star formation using >1>1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.Comment: 41 pages, 27 figures, accepted for publication by MNRA
    • …
    corecore